
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2017-05-01

Network Reconstruction and Vulnerability
Analysis of Financial Networks
Nathan Scott Woodbury
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Woodbury, Nathan Scott, "Network Reconstruction and Vulnerability Analysis of Financial Networks" (2017). All Theses and
Dissertations. 6370.
https://scholarsarchive.byu.edu/etd/6370

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6370&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F6370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6370?utm_source=scholarsarchive.byu.edu%2Fetd%2F6370&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Network Reconstruction and Vulnerability Analysis of

Financial Networks

Nathan Scott Woodbury

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Sean Warnick, Chair
Scott Condie
Dan Ventura

Department of Computer Science

Brigham Young University

Copyright c© 2017 Nathan Scott Woodbury

All Rights Reserved

www.manaraa.com

ABSTRACT

Network Reconstruction and Vulnerability Analysis of
Financial Networks

Nathan Scott Woodbury
Department of Computer Science, BYU

Master of Science

Passive network reconstruction is the process of learning a structured (networked)
representation of a dynamic system through the use of known information about the structure
of the system as well as data collected by observing the inputs into a system along with
the resultant outputs. This work demonstrates an improvement on an existing network
reconstruction algorithm so that the algorithm is capable of consistently and perfectly
reconstructing a network when system inputs and outputs are measured without error. This
work then extends the improved network reconstruction algorithm so that it functions even
in the presence of noise as well as the situation where inputs into the system are unknown.
Furthermore, this work demonstrates the capability of the new extended algorithms by
reconstructing financial networks from stock market data, and then performing an analysis
to understand the vulnerabilities of the reconstructed network to destabilization through
localized attacks. The creation of these improved and extended algorithms has opened many
theoretical questions, paving the way for future research into network reconstruction.

Keywords: Network reconstruction, realization theory, system identification, vulnerability
analysis, financial networks, partial structure representation, linear time-invariant systems

www.manaraa.com

ACKNOWLEDGMENTS

I would like to give a special thank you to Vasu Chetty, who was the author of

the original passive network reconstruction paper and who provided considerable feedback

throughout the development of this thesis. I would also like to thank my adviser, Dr. Sean

Warnick, as well as the rest of my committee for supporting me in this project. I would also

like to thank my family and my colleagues in the IDeA Labs for their continued support.

www.manaraa.com

Table of Contents

List of Figures viii

List of Tables xii

List of Listings xv

1 Problem Statement and Contributions 1

1.1 Problem Statement . 1

1.2 Theoretical Road-map . 2

1.3 Contributions . 3

2 Dynamical Structure Functions 5

2.1 Background . 5

2.2 From State Space to Dynamical Structure Function 7

3 Vulnerability and Security of Networked Control Systems 10

3.1 Networked Control Systems . 11

3.1.1 Common Terminology . 13

3.2 Historic Attacks on Networked Control Systems 15

3.2.1 Stuxnet . 15

3.2.2 Maroochy Water Services . 15

3.2.3 Polish Tram System Hacked by Teenager 16

3.2.4 Power Blackouts . 16

3.3 Potential Attacks on Networked Control Systems 17

iv

www.manaraa.com

3.3.1 Observability and Related Vulnerabilities 17

3.3.2 Stability and Related Vulnerabilities 22

4 Modelling and Simulation of Markets 25

4.1 Overview of the Stock Market . 25

4.2 Limit Orders . 26

4.3 The Matching Engine, the Limit Order Book, and Prices 28

4.4 Data Sources . 31

4.4.1 The ITCH Data . 32

4.4.2 Yahoo Finance . 33

4.4.3 The Tour de Finance . 33

5 Vulnerability to Single-Link Destabilization Attacks 36

5.1 Problem Formulation . 36

5.2 Solution . 39

6 Vanilla Passive Network Reconstruction 41

6.1 Introduction - Network Reconstruction . 42

6.2 Problem Formulation . 44

6.3 The Vanilla Passive Network Reconstruction Algorithm 47

6.4 Assumptions Necessary for Reconstruction 57

6.5 Numeric Example . 58

6.6 On the Convergence of the Vanilla Passive Network Reconstruction Algorithm 64

6.7 Conclusions . 65

7 Robust Passive Network Reconstruction 66

7.1 Problem Formulation . 66

7.2 The Robust Passive Network Reconstruction Algorithm 67

7.3 Assumptions Necessary for Reconstruction 68

v

www.manaraa.com

7.4 Numeric Examples . 68

7.4.1 Robust Network Reconstruction on Non-Noisy Data 69

7.4.2 Vanilla and Robust Network Reconstruction on Noisy Inputs 72

7.4.3 Vanilla and Robust Network Reconstruction on Noisy Outputs 79

7.4.4 Vanilla and Robust Network Reconstruction on Noisy Inputs and Outputs 85

7.5 On the Convergence of the Robust Passive Network Reconstruction Algorithm 91

7.6 Conclusions . 92

8 Blind Passive Network Reconstruction 93

8.1 Problem Formulation . 93

8.2 The Blind Passive Network Reconstruction Algorithms 94

8.3 Assumptions Necessary for Reconstruction 96

8.4 Numeric Examples . 97

8.4.1 Blind Reconstruction with No Noise 98

8.4.2 Blind Reconstruction with Noisy Outputs 104

8.5 On the Convergence of the Blind Passive Reconstruction Algorithms 111

8.6 Conclusions . 111

9 Open Questions in Passive Network Reconstruction 113

10 Vulnerability Analysis of Financial Networks 117

10.1 Network Reconstruction as Applied to Financial Networks 117

10.1.1 Interpretation of A Reconstructed Financial Network 119

10.1.2 Interpretation of the Impulse Responses 119

10.1.3 Interpretation of Link Magnitudes . 121

10.1.4 Creating a Destabilizing Attack on Financial Networks 121

10.1.5 Protecting Against a Destabilizing Attack on Financial Networks . . 122

10.2 Reconstructability of Financial Networks . 122

10.3 Datasets . 125

vi

www.manaraa.com

10.3.1 Dataset 1 (Daily Data) . 125

10.3.2 Dataset 2 (Minute-Resolution Data) 126

10.3.3 Dataset 3 (Decisecond-Resolution Data) 127

10.4 Reconstructed Networks . 128

10.4.1 Network 1 . 128

10.4.2 Network 2 . 141

10.5 Discussion . 151

11 Conclusions 152

Appendices 153

A Implementation Notes 154

B Source Code 156

References 166

vii

www.manaraa.com

List of Figures

1.1 A theoretical road-map of the foundations for and contributions from this thesis 2

3.1 The feedback interaction between a plant and a controller 11

3.2 A control system equipped with an observer 18

3.3 A denial of service attack on a networked control system 20

4.1 Overview of the Stock Market . 26

4.2 A more detailed view of the stock market . 27

4.3 The limit order book of Citigroup on 3/7/17 at 9:30 AM EST 32

4.4 The limit order book of Citigroup across the day on 3/7/14 33

4.5 Performance of the top four teams in the Tour de Finance Competition . . . 34

6.1 Convergence of network reconstruction as data streams in 43

6.2 The Vanilla Passive Network Reconstruction Algorithm 47

6.3 The impulse responses of the VPNR Algorithm on non-noisy data 62

6.4 The magnitude and vulnerability of links reconstructed using the VPNR

Algorithm on non-noisy data . 63

6.5 The quality of reconstruction of the VPNR Algorithm at various levels of r

and T . 64

7.1 The impulse responses reconstructed using the RPNR Algorithm on non-noisy

data . 70

7.2 The magnitude and vulnerability of links reconstructed by the RPNR algorithm

on non-noisy data . 71

viii

www.manaraa.com

7.3 The impulse responses reconstructed using the VPNR Algorithm on noisy inputs 73

7.4 The magnitude and vulnerability of links reconstructed by the VPNR algorithm

on noisy inputs . 74

7.5 The inpulse responses reconstructed using the RPNR Algorithm on noisy inputs 76

7.6 The magnitude and vulnerability of links reconstructed by the RPNR algorithm

on noisy inputs . 77

7.7 Effect of input noise on the ability of the VPNR and RPNR Algorithms to

reconstruct . 79

7.8 The impulse responses reconstructed using the VPNR Algorithm on noisy

outputs . 80

7.9 The magnitude and vulnerability of links reconstructed by the VPNR algorithm

on noisy outputs . 81

7.10 The impulse responses reconstructed using the RPNR Algorithm on noisy

outputs . 83

7.11 The magnitude and vulnerability of links reconstructed by the RPNR algorithm

on noisy outputs . 84

7.12 Effect of output noise on the ability of the VPNR and RPNR Algorithms to

reconstruct . 85

7.13 The impulse responses reconstructed using the VPNR Algorithm on noisy

inputs and outputs . 86

7.14 The magnitude and vulnerability of links reconstructed by the VPNR algorithm

on noisy inputs and outputs . 87

7.15 The impulse responses reconstructed using the RPNR Algorithm on noisy

inputs and outputs . 89

7.16 The magnitude and vulnerability of links reconstructed by the RPNR algorithm

on noisy inputs and outputs . 90

ix

www.manaraa.com

7.17 Effect of input and output noise on the ability of the VPNR and RPNR

Algorithms to reconstruct . 91

7.18 The quality of reconstruction of the RPNR Algorithm with non-noisy and

noisy data . 92

8.1 The impulse responses reconstructed using the B-VPNR Algorithm on non-

noisy data . 99

8.2 The magnitude and vulnerability of links reconstructed by the B-VPNR

algorithm on non-noisy data . 100

8.3 The impulse responses reconstructed using the B-RPNR Algorithm on non-

noisy data . 102

8.4 The magnitude and vulnerability of links reconstructed by the B-RPNR

algorithm on non-noisy data . 103

8.5 The impulse responses reconstructed using the B-VPNR Algorithm on noisy

outputs . 105

8.6 The magnitude and vulnerability of links reconstructed by the B-VPNR

algorithm on noisy outputs . 107

8.7 The impulse responses reconstructed using the B-RPNR Algorithm on noisy

outputs . 108

8.8 The magnitude and vulnerability of links reconstructed by the B-RPNR

algorithm on noisy outputs . 110

8.9 Effect of output noise on the ability of the B-VPNR and the B-RPNR Algo-

rithms to reconstruct from data . 111

8.10 The quality of reconstruction of the B-VPNR and B-RPNR Algorithms on

non-noisy and noisy data . 112

10.1 Overview of the stock market . 118

10.2 An example of impulse reponses of financial data 120

x

www.manaraa.com

10.3 The prices in Dataset 1 (Daily Resolution) 126

10.4 The prices in Dataset 2 (minute resolution) 127

10.5 The prices in Dataset 3 (decisecond resolution) 128

10.6 The impulse responses of links in Network 1 from Dataset 1 using the B-VPNR

Algorithm . 130

10.7 The impulse responses of links in Network 1 from Dataset 1 using the B-RPNR

Algorithm . 131

10.8 The magnitude and vulnerability of links in Network 1 from Dataset 1 133

10.9 The impulse responses of links in Network 1 from Dataset 2 using the B-VPNR

Algorithm . 134

10.10The impulse responses of links in Network 1 from Dataset 2 using the B-RPNR

Algorithm . 135

10.11The magnitude and vulnerability of links in Network 1 from Dataset 2 137

10.12The impulse responses of links in Network 1 from Dataset 3 using the B-VPNR

Algorithm . 138

10.13The impulse responses of links in Network 1 from Dataset 3 using the B-RPNR

Algorithm . 139

10.14The magnitude and vulnerability of links in Network 1 from Dataset 3 141

10.15The magnitude and vulnerability of links in Network 2 from Dataset 1 145

10.16The magnitude and vulnerability of links in Network 2 from Dataset 2 148

10.17The magnitude and vulnerability of links in Network 2 from Dataset 3 151

xi

www.manaraa.com

List of Tables

4.1 Example of a stream of orders arriving at the Matching Engine. 27

6.1 The size (‖Qij(z)‖∞) and the vulnerability (‖(I −Q(z))−1ji ‖∞) of links (i, j) in

the actual Q(z) given by Equation (6.23). 60

6.2 The magnitude and vulnerability of links reconstructed using the VPNR

Algorithm on non-noisy data . 63

7.1 The magnitude and vulnerability of links reconstructed by the RPNR algorithm

on non-noisy data . 71

7.2 The magnitude and vulnerability of links reconstructed by the VPNR algorithm

on noisy inputs . 74

7.3 The magnitude and vulnerability of links reconstructed by the RPNR algorithm

on noisy inputs . 77

7.4 The magnitude and vulnerability of links reconstructed by the VPNR algorithm

on noisy outputs . 81

7.5 The magnitude and vulnerability of links reconstructed by the RPNR algorithm

on noisy outputs . 84

7.6 The magnitude and vulnerability of links reconstructed by the VPNR algorithm

on noisy inputs and outputs . 87

7.7 The magnitude and vulnerability of links reconstructed by the RPNR algorithm

on noisy inputs and outputs . 90

xii

www.manaraa.com

8.1 The magnitude and vulnerability of links reconstructed by the B-VPNR

algorithm on non-noisy data . 100

8.2 The magnitude and vulnerability of links reconstructed by the B-RPNR

algorithm on non-noisy data . 103

8.3 The magnitude and vulnerability of links reconstructed by the B-VPNR

algorithm on noisy outputs . 106

8.4 The magnitude and vulnerability of links reconstructed by the B-RPNR

algorithm on noisy outputs . 109

10.1 The magnitude and vulnerability of links in Network 1 from Dataset 1 using

the B-VPNR Algorithm . 132

10.2 The magnitude and vulnerability of links in Network 1 from Dataset 1 using

the B-RPNR Algorithm . 132

10.3 The magnitude and vulnerability of links in Network 1 from Dataset 2 using

the B-VPNR Algorithm . 136

10.4 The magnitude and vulnerability of links in Network 1 from Dataset 2 using

the B-RPNR Algorithm . 136

10.5 The magnitude and vulnerability of links in Network 1 from Dataset 3 using

the B-VPNR Algorithm . 140

10.6 The magnitude and vulnerability of links in Network 1 from Dataset 3 using

the B-RPNR Algorithm . 140

10.7 The magnitude and vulnerability of links in Network 2 from Dataset 1 using

the B-VPNR Algorithm . 143

10.8 The magnitude and vulnerability of links in Network 2 from Dataset 1 using

the B-RPNR Algorithm . 144

10.9 The magnitude and vulnerability of links in Network 2 from Dataset 2 using

the B-VPNR Algorithm . 146

xiii

www.manaraa.com

10.10The magnitude and vulnerability of links in Network 2 from Dataset 2 using

the B-RPNR Algorithm . 147

10.11The magnitude and vulnerability of links in Network 2 from Dataset 3 using

the B-VPNR Algorithm . 149

10.12The magnitude and vulnerability of links in Network 2 from Dataset 3 using

the B-RPNR Algorithm . 150

xiv

www.manaraa.com

List of Listings

B.1 Reconstructor.py: Library for reconstructing networks from data. Con-

tains the VPNR, RPNR, B-VPNR, and B-RPNR. 156

B.2 ss.py: Computes the outputs of the given state space model over time using

the given inputs. 163

B.3 ex ss.py: Example usage of ss.py. Generates inputs Du ∈ RT×m, where

m = 3, T = 601, and each entry is taken from a uniform distribution spanning

from −1 to 1. The script then simulates the outputs of the state space system

introduced in Section 6.5. 163

B.4 ex vpnr.py: Example usage of the VPNR Algorithm. 164

B.5 ex rpnr.py: Example usage of the RPNR Algorithm. 164

B.6 ex bvpnr.py: Example usage of the B-VPNR Algorithm. 164

B.7 ex brpnr.py: Example usage of the B-RPNR Algorithm. 165

xv

www.manaraa.com

Chapter 1

Problem Statement and Contributions

In this chapter, we briefly outline the problem we are seeking to solve in this thesis.

We also provide a road-map to the theoretical foundations to and contributions from this

thesis.

1.1 Problem Statement

The ultimate objective of this thesis is to analyze the vulnerability of a financial network

to a single-link destabilization attack. A destabilization attack is a local attack on a single

link within a network with the objective of destabilizing the system–or, in other words,

causing cascading failure throughout the system. A vulnerability analysis of a network to

destabilization attacks asks the question of which link in the network would require the least

amount of effort to destabilize.

To perform this vulnerability analysis, we first need a model of the financial network.

Rather than build such a model from first principles, we seek instead to learn the model

using financial data. The process of learning a network model from observed outputs from

and/or inputs into a system is known as network reconstruction.

Much of this thesis is devoted to formulating and solving a sequence of related network

reconstruction problems so that the reconstruction of financial networks is possible.

1

www.manaraa.com

1.2 Theoretical Road-map

A road-map of the theory on which this thesis is built, as well as the contributions from this

thesis, is given in Figure 1.1. The first–and arguably most significant–foundation to this work

is linear systems theory; in particular, the theory of dynamical structure functions (DSFs).

A brief introduction to linear systems and DSF theory is provided in Chapter 2.

Figure 1.1 A theoretical road-map of the foundations for and contributions from this thesis.
Orange nodes are a direct result of this thesis. Yellow nodes had theory that existed prior to
this thesis, but also had significant contributions from this work. Nodes are prefixed by the
chapters in which the node is discussed.

The second foundation is security; in particular, the security of networked control

systems (NCSs). A background into the theory of security of NCSs is provided in Chapter 3.

The final foundation to this work is the theory of stock markets, and in particular, the

modelling and simulation of stock markets. This foundation is discussed in Chapter 4.

DSF theory has two significant applications. The first–which also has a foundation in

the security of NCSs–is vulnerability analysis of networked systems to single-link destabiliza-

tion attacks (which, for brevity, we will refer to as “vulnerability analysis”). This analysis was

2

www.manaraa.com

discussed briefly in the previous section and will be discussed in further detail in Chapter 5.

The second is network reconstruction, which will be discussed in further detail in Section 6.1.

This thesis refines the process of passive (meaning inputs into the system are observed,

not controlled) network reconstruction of dynamical structure functions in the time domain

that was originally introduced in [10]. The refined algorithm is known as the Vanilla Passive

Network Reconstruction (VPNR) Algorithm and is discussed in depth in Chapter 6.

We then make an extension to the VPNR algorithm to make it more robust to additive

noise on the data received. The resultant algorithm is called the Robust Passive Network

Reconstruction (RPNR) Algorithm. The RPNR Algorithm is discussed in Chapter 7. We

extend both the VPNR and the RPNR algorithms so that they function in the situation

where the inputs into the systems are unknown and unmeasured. The extended algorithms

are called the Blind Vanilla Passive Network Reconstruction (B-VPNR) Algorithm and the

Blind Robust Passive Network Reconstruction (B-RPNR) Algorithms. These Algorithms

are discussed in Chapter 8. Finally, open questions in passive network reconstruction are

discussed in Chapter 9.

The culmination of this thesis is Chapter 10, which uses both blind reconstruction

algorithms to build network models of the stock market, and then leverages the vulnerability

analysis to determine where these networks may be most susceptible to attack. Note that

the development of the blind reconstruction algorithms is necessary for the reconstruction of

financial networks since output data (stock prices) is easily accessible, whereas a complete

collection of input data (news, sentiment, external market forces, etc.) would be nearly

impossible to find.

1.3 Contributions

In summary, the direct contributions of this thesis are as follows:

• Vanilla Reconstruction: Refinement of the implementation of the passive reconstruction

algorithm presented in [10], enabling (as described in Chapter 6):

3

www.manaraa.com

– Consistent and accurate reconstruction without the need to choose initial conditions

and additional parameters

– Reconstruction of proper dynamics while evaluating a much smaller time horizon

(100 instead of 600 in the numerical example given)

• Robust Passive Reconstruction: Extension of the passive reconstruction algorithm

presented in [10] to be robust to noise (Chapter 7).

• Blind Passive Reconstruction: Extension of the robust passive reconstruction algorithm

to consider the case where only the outputs to the network (and not the inputs) are

measured (Chapter 8).

• Reconstruction and Vulnerability Analysis of Financial Networks : Application of the

newly developed network reconstruction techniques along with an existing vulnerability

analysis to stock market data (Chapter 10).

4

www.manaraa.com

Chapter 2

Dynamical Structure Functions

The Dynamical Structure Function (DSF) is a convenient way to represent the signal

structure of a linear time-invariant (LTI) system (note that, throughout this work, all

references to systems are in actuality references to continuous and LTI).

2.1 Background

The DSF of a discrete-time LTI system is characterized by the pair (Q(z), P (z)) (or

(Q(s), P (s)) for continuous-time LTI systems), which of matrices of real rational polynomials

in terms of z ∈ C. If Y (z) and U(z) are the frequency-domain representation of the outputs

and inputs of some system, then the DSF relates inputs and outputs through the following

equation:

Y (z) = Q(z)Y (z) + P (z)U(z). (2.1)

5

www.manaraa.com

Note that the transfer function matrix G(z) is the black-box mapping from inputs to

outputs given by

Y (z) = G(z)U(z). (2.2)

By solving for Y (z) in Equation (2.1) we can define the relationship between the transfer

function and the DSF with the following equation:

G(z) = (I −Q(z))−1P (z). (2.3)

Equation (2.3) highlights the fact that the DSF is a left factorization of the transfer

function and potentially contains more structural information about the system (see [7, 45]).

This makes DSFs particularly useful in many applications.

Since DSFs can abstract away some of the information contained in the transfer

function, a DSF can be reconstructed from input-output data while requiring less a prior

knowledge about the structure of the system than is necessary for the system. It should

be noted that, since input-output data can only reconstruct input-output maps such as the

Transfer Function, the reconstruction of the DSF will still require some a priori knowledge

about the system (see Chapter 6).

Furthermore, since DSFs can represent abstractions away from the full computational

structure of a system, they can be used to represent the amount of knowledge that an attacker

may have about the system, making them a friendly mathematical structure for the analysis

of attacks on networked systems. Theory has been developed using DSFs to understand how

local perturbations in a network systems–which are called destabilization attacks–can cause

cascading failure throughout the entire system (see Chapter 5).

Since this thesis involves the reconstruction of financial networks from data, coupled

with a vulnerability analysis of said networks, DSFs will form the core mathematical foundation

for this work.

6

www.manaraa.com

2.2 From State Space to Dynamical Structure Function

The process of deriving the DSF from the State Space Representation of a system is contained

in [7]. Since DSFs are a critical component of this work, we include those results here. Note

that [7] derives the DSF for continuous-time systems, the process is identical for discrete-

time systems if the Z-transform is used in place of the Laplace transform. We show the

discrete-time derivation here.

Consider a system represented by the following state space equations:

x̂[k + 1] = Âx̂[k] + B̂u[k],

y[k] = Ĉx̂[k] + D̂u[k]., (2.4)

where Â ∈ Rn×n, B̂ ∈ Rn×m, Ĉ ∈ Rl×n, and D̂ ∈ Rl×m. Then the procedure for finding the

Dynamical Structure Function (DSF) representation of this system is as follows:

1. Let p = rank(Ĉ). Partition and permute Ĉ so that

Ĉ =

Ĉ1

Ĉ2

 , (2.5)

with Ĉ1 ∈ Rp×n and rank(Ĉ1) = p (note that if Ĉ is full row rank, then Ĉ1 = Ĉ and

Ĉ2 is empty). Also, permute the rows of y in the same manner, so that y = [y1 y2]
T

with y1 ∈ Rp.

The dynamical structure function will then be given by the (l × p) and (l × n)

real rational matrix functions Q(z) and P (z), which will be computed in the subsequent

steps.

2. Create an invertible transformation T ∈ Rn×n given by

T =

[
ĈT

1 E1

]T
, (2.6)

7

www.manaraa.com

where E1 ∈ Rn×(n−p) is any basis of the null space of Ĉ1. Then,

T−1 =

[
R1 E1

]
, (2.7)

where R1 = ĈT
1 (Ĉ1Ĉ

T
1)−1.

3. Change basis such that x[k] = T x̂[k], yielding A = TÂT−1, B = TB̂, C = ĈT−1,

D = D̂, which are partitioned commensurate with the block partitioning of T and T−1

to give

x1[k + 1]

x2[k + 1]

 =

A11 A12

A21 A22

x1[k]

x2[k]

+

B1

B2

u[k],

y1[k]

y2[k]

 =

 I 0

C21 0

x1[k]

x2[k]

+

D1

D2

u[k]. (2.8)

4. Assume zero initial conditions and defining X1, X2, U , and Y to be the Z-transforms

of x1[k], x2[k], u[k], and y[k] respectively, take the Z-transforms of this system, and

then solve for X2, yielding

zX1 =

[
A11 + A12(zI − A22)

−1A21

]
X1

+

[
B1 + A12(zI − A22)

−1B2

]
U,Y1

Y2

 =

 I 0

C21 0

X1

X2

+

D1

D2

 . (2.9)

5. Define:

W (z) = A11 + A12(zI − A22)
−1A21, (2.10)

V (z) = B1 + A12(zI − A22)
−1B2, (2.11)

8

www.manaraa.com

and let DW (z) = diag(W (z)) be the matrix function consisting only of the diagonal

entries of W (z) (and zero elsewhere).

6. Let

Q̂(z) = (sI −DW (z))−1(W (z)−DW (z)), (2.12)

P̂ (z) = (sI −DW (z))−1V (z). (2.13)

Then

X1 = Q(z)X1 + P (z)UY1
Y2

 =

 I 0

C21 0

X1

X2

+

D1

D2

 . (2.14)

7. Noting from 2.14 that X1 = Y1 −D1U , the DSF of Equation (2.4) is then given by:

Q(z) =

Q̂(z)

C21

 (2.15)

P (z) =

P (z) + (I −Q(z))D1

D2 − C21D1

 . (2.16)

Note that when D = 0 and C21 is empty, Q(s) = Q̂(s) and P (s) = P̂ (s). This

simplified version of the DSF is often used in place of the extended DSF above, and

will be the form used in this thesis.

9

www.manaraa.com

Chapter 3

Vulnerability and Security of Networked Control Systems

Traditional IT systems interact primarily with information and data. As a result,

information security has developed significant and mature technology that is focused entirely

on the protection of information (consider, for example, authentication, access control, message

integrity, privacy preservation, etc.). These technologies are necessary to the security of

control systems. Unfortunately, as shown by a few of the incidents in Section 3.2, information

security is often lacking in many critical NCS’s, allowing attackers to cause considerable

amount of damage with relative ease.

NCS’s differ from IT systems in that they are created by a computational system that

is connected in feedback with a physical system. As such, information security is not entirely

sufficient in the protection of networked control systems. Ultimately, traditional IT research

has not considered how attacks might affect the estimation and control algorithms that are

10

www.manaraa.com

Figure 3.1 The feedback interaction between a plant and a controller. The controller is
designed to stabilize the plant, driving it to a desired state.

critical to the functionality of NCS’s. Furthermore, they do not consider the affect attacks

may have on the physical world. As a result, security research on NCS’s must consider threats

at both the cyber and the physical layers of the system [5, 36, 43].

Systems and control theory has a long tradition of developing mathematical frameworks

that are broad enough to model most–if not all–NCS’s, and yet are precise enough to conduct

rigorous and meaningful robustness analyses that are critical to understanding the security of

an NCS. As such, many researchers are turning to control theory as a framework for posing

and solving security problems relating to NCS’s. Thus, it has been proposed that control

theory can offer the following contributions to the security community [12]:

• Technology neutral tools that complement platform- or protocol-specific security systems

• Proactive (as opposed to reactive) tools

• Rigorous analysis of NCS’s, including those that involve humans in the decision-making

process

• Strategic wide-area perspectives of the cyber-ecosystem

3.1 Networked Control Systems

Much of the theory of control is built around Figure 3.1. In this figure, we have a plant

(which could be an internet network, a power grid, an economy, an ecosystem, a robot, etc.),

11

www.manaraa.com

which is a system with state (memory) that evolves over time. This state can be affected

by actuators, which are driven by inputs into the system. Some of these inputs (u) can be

controlled, while others (w) cannot. We can also measure some of the states of the system

with sensors to produce a signal y.

The objective, therefore, is to design a controller that reads in the signal y from the

sensors of the system and then makes decisions to drive the system to a desired stable state.

The combined system consisting of the plant and controller in feedback becomes a control

system.

As described previously, networked control systems (NCS’s) are set apart from most

traditional IT systems by their interaction with the physical world. However, this interaction

does not necessarily have to occur through machines. For example, the following systems

could be considered as NCS’s:

• Financial networks–the focus of this thesis–which interact through assets, securities,

prices, etc.

• Social networks which interact through people and relationships

• Modern agricultural systems [9] which interact through farm equipment, farmer decisions,

biology, chemistry, etc.

Each of these non-traditional control systems are still described by the feedback interaction

between a controller (which is often code that exists in cyberspace) and a plant (the physical

system). The plant may be distributed physically (e.g. power lines, meters, stations, plants,

etc.) with individual components connected to distributed locations on the cloud. The

communications u and y between components of the plant and components then occur over

standard or specialized protocols (such as TCP/IP for the web or 4G over cellular networks).

While the inclusion of a physical layer is the primary difference between a NCS and

an IT system, it has been recognized that they differ in a few additional properties as well

[5, 12]:

12

www.manaraa.com

• Availability as the Primary Objective: NCS’s such as power systems, water systems,

transportation networks, etc. must provide continuous service even in the presences

of failures, faults, and attacks, as opposed to IT systems where confidentiality and

integrity of data is the primary concern

• Simpler Network Dynamics: Servers rarely change, the network exhibits a fixed topology,

the user population is stable, and communication patterns are regular and use a limited

number of protocols

• Infrequent Updates: Upgrading a system may require months of planning of how to

take a system safely offline for an upgrade; therefore, patching and frequent updates

are not economically feasible

• Real-time Requirements: A NCS typically needs to make decisions in real time, creating

a stricter operating environment than most traditional IT systems

Since NCS’s are specialized forms of a control systems, we can leverage the long and

rich tradition of control theory to discover ways to secure NCS’s from various forms of attack.

3.1.1 Common Terminology

Terms that have been associated with networked control systems include SCADA systems,

cyber-physical systems, and critical infrastructure systems. Frequently, these terms are used

interchangeably, though there are subtle differences between them.

Cyber-physical systems (CPS’s) are defined as the integrations of physical processes

with computation. Embedded computers or networks use sensors to monitor the physical

processes and controls them through actuators. Thus, in CPS’s, feedback allows computation

to affect physical processes and vice versa [21].

Networked control systems (NCS’s) are often defined as a CPS where the communica-

tions u and y between the physical system and the controller are passed through a network

which may be shared with nodes outside the system (the internet or a cellular network, for

13

www.manaraa.com

example [44]). Under this definition, the engine inside a modern vehicle can be considered to

be a CPS since it is controlled through an on-board computer. However, it is not an NCS

since all communication between the engine and the on-board computer is contained within

the vehicle and not tied to an external network. Conceivably, however, engines in the future

could become part of NCS’s with the advent of autonomous vehicles, tying the control of a

vehicle into a larger network.

While most of the work generally focuses on NCS’s–specifically financial networks–it

could also be more broadly applicable to the general class of networked systems, which may

be entirely cyber or entirely physical, and which may utilize a variety of communication

schemes.

Supervisory Control and Data Acquisition (SCADA) systems are the software frame-

works for controllers on NCS’s (especially large industrial NCS’s). They allow the real-time

monitoring of data measured by the sensors within the network, and allow human or auto-

mated controllers to drive the system to its desired state. Recently, SCADA systems have

been trending to become more standardized [51].

The United States defines Critical Infrastructure Systems as “certain infrastructures

whose incapacity or destruction would have a debilitating impact on our defense or economic

security [32].” These infrastructures do not necessarily have to be NCS’s or CPS’s; however,

they are increasingly becoming so as new technologies are developed and implemented. The

US Department of Homeland Security oversees 14 categories of critical infrastructure systems,

namely agriculture and food, banking and finance, the chemical sector, the communications

sector, commercial facilities, critical manufacturing, dams, information technology, government

facilities, health-care and public health, water, nuclear reactors, the defense industrial base,

transportation, and emergency services [12].

14

www.manaraa.com

3.2 Historic Attacks on Networked Control Systems

NCS’s have been attacked on multiple occasions in the past, with varying levels of success.

In this section, we explore some of the most well-known attacks on NCS’s.

3.2.1 Stuxnet

In 2010, the Stuxnet worm made history as one of the earliest cyber-warfare weapons

created. The worm much more complex than all preceding pieces of malware, and unlike

its predecessors, it was targeted at physically destroying a military target (as opposed to

stealing, manipulating, or erasing information). Interestingly, the worm was not targeted

at SCADA software; rather, it was aimed at the industrial controllers that might not even

be attached to a SCADA system. Furthermore, the worm was not remotely controlled and

didn’t even require access to the internet to function.

The worm spread primarily through USB sticks and local networks, infecting any

Windows machines it could find. However, it was very careful to only attack controllers

that were manufactured by Siemens. As a result, it was capable of specifically targeting the

Natanz uranium enrichment plant in Iran.

Stuxnet operated as a replay attack (see Section 3.3.1), allowing the original controller

to continue to operate while isolating it from the actual input/output of the system, instead

feeding it prerecorded data, much like the bad guys in a Hollywood film that replace the feed

of observation cameras with unsuspicious prerecorded input [15, 20].

3.2.2 Maroochy Water Services

In January of 2000, a new SCADA system was brought online to monitor and control the

sewage system at Maroochy Water Services in Queensland, Australia. Soon thereafter, this

new system was plagued by considerable technical issues. Radio communications sent between

the control center and pumping stations were being lost, pumps were not functioning properly,

and the alarms put in place to alert staff to problems were not being triggered. These

15

www.manaraa.com

problems caused the flooding of a nearby hotel, a park, and a river with approximately a

million liters of sewage.

These problems persisted for roughly three months before engineers realized that the

faults were not technical, but rather attacks launched by an outside attacker. Vitek Boden, a

former contractor who originally installed the control system, was perpetrating these attacks

in part as revenge against the Maroochy Shire Council after failing to secure a job there and

in part as an attempt to convince the company to hire him to solve the problem. Over this

period, with only a laptop computer and a radio transmitter, he successfully took control of

150 sewage pumping stations and launched 46 attacks against them.

The Maroochy incident quickly became highly cited worldwide as an example of the

damage that can be caused from an attack on a NCS. The incident and further investigation

has revealed that often it is very difficult to detect and protect against attacks against NCS’s.

Furthermore, many of these systems fail to properly implement and secure their software and

communication protocols [5, 42].

3.2.3 Polish Tram System Hacked by Teenager

In 2008, a 14-year-old Polish teenager modified a TV remote to change the track points of

the tram system in the city of Lodz as a prank. As a result, four trains were derailed and a

dozen people were injured. Fortunately, nobody was killed. The ease with which this teenager

hacked this critical system is an eye opener to the importance of security in NCS’s [23].

3.2.4 Power Blackouts

In 2003, an incident now known as the Northeast Blackout, caused cascading failure across

seven U.S. states and Ontario. In 2011, a similar incident hit Arizona, California, and

Mexico’s Baja California. In both cases, inadequate information, poor planning, and human

error enabled a single downed power line to leave millions of homes and businesses without

16

www.manaraa.com

power. Experts predict that such blackouts will continue to occur at greater frequency and

magnitude [14].

While these blackouts were not caused by malicious attacks, they illustrate the

vulnerability of existing NCS’s to small faults. Furthermore, a malicious attacker could take

advantage of these vulnerabilities to cause considerable damage.

3.3 Potential Attacks on Networked Control Systems

As described previously, the security of NCS’s is dependent on the principles studied in

traditional IT security. However, these principles are not entirely sufficient to guarantee the

security of the system. Since, at their core, NCS’s are feedback control systems, classical

control theory can be used to not only highlight vulnerabilities of the NCS that aren’t always

apparent through IT security analysis, but it can also be used to protect against these

vulnerabilities.

In this section, we explore two of the most basic concepts in control theory, namely

stability and observability, and highlight some of the vulnerabilities that become apparent

when applying those concepts to NCS’s.

3.3.1 Observability and Related Vulnerabilities

Observability is a measure of how well the state (or more precisely, the initial condition) of

the system can be inferred by measuring its external outputs.

More formally, let x(t) be the state of the system at time t. A state q 6= 0 is

unobservable if, for initial condition x(0) = q and every possible input into the system, the

output is the same as if the system had started with x(0) = 0. In other words, the non-zero

initial condition cannot be distinguished from the initial condition. An unobservable system

is defined as a system with at least one unobservable state. An observable system is then

defined as a system that is not unobservable [13]. As a relaxation of observability, detectability

17

www.manaraa.com

Figure 3.2 A control system equipped with an observer. The observer records the controller’s
inputs u into the plant and observes the output y from the plant that results from that input.
Using this information, the observer provides an estimate x̂ of the current state of the plant
to the controller. Note, if the observer and controller are combined into a single system, then
this figure is equivalent to Figure 3.1.

is defined if all unobservable states converge to zero, meaning that unobservable states are

stable and trivial.

If the plant (the physical system) is detectable, but the state of the physical system

is not known by the controller, the controller will require an observer to estimate the state

of the system (Figure 3.2). An observer logs all the inputs u that the controller feeds into

the plant and observes the outputs y that results. Internally, the observer runs a simulation

of the plant using the inputs received by the actual system as well as its best estimate of

the initial condition of the plant, and then compares the simulated output to the actual

output from the plant. Supposing that the simulation of the plant is accurate, then the error

between the predicted and observed output will be zero if the estimated initial condition is

equal to the actual. If not, then the observer adjusts the initial condition until this error is

minimized. Once a good estimate of the initial condition is found, then the observer can

estimate the current state of the system and forward that to the controller.

If the plant and the controller are both governed by linear, time-invariant systems,

then the Kalman Filter has been proven to be the optimal observer, meaning that the error

between predicted and observed output converges to zero more quickly than any other possible

18

www.manaraa.com

observer. Furthermore, the Kalman Filter is robust to noise on the output measurements

and on the states of the plant [13].

Denial of Service Attacks

On a network governed by the TCP protocol, a denial of service (DoS) attack occurs when an

attacker sends many requests from spoofed sources to a victim machine. Once a maximum

number of connections is made, under TCP, the victim will block all future connections.

Unfortunately, it is relatively cheap to launch DoS attacks anonymously; as such it is

notoriously difficult to defend against such attacks [37], though proposals have been made

and shown to significantly increase the cost of launching a DoS attack [3, 19].

In the context of a NCS, a DoS attack can interrupt part or all the communications

between the physical system and the cyber controller. If the output of the physical system

(which is used as the input to the controller) becomes sufficiently disrupted, then the physical

system becomes unobservable, preventing the plant from choosing the proper control law

to drive the system to the desired state. Similarly, if the output of the controller (which is

the input into the physical system) becomes sufficiently disrupted, the controller becomes

unobservable, preventing the system from receiving the proper control low to drive it to the

desired state.

In contrast to a DoS attack on an IT system which merely prevents access to a desired

service on the web, a DoS attack on an NCS can cause considerable performance problems

across the entire system, possibly causing it to destabilize entirely [25].

The work in [2] seeks to find a controller to minimize the effect of random and/or

deliberate dropping of packets transmitted between the system and controller, posing the

problem as a constrained optimal control problem. In control theory, the optimal control

problem is the choice of selecting a controller from a class of controllers that best meets some

performance objective. Frequently, this performance objective is selected to minimize the

energy used by the states of and inputs into the plant (the physical system, in our case)

19

www.manaraa.com

Figure 3.3 A denial of service attack on a networked control system. Attack (1) blocks part
or all of the control signal u from the controller to the physical system, making the controller
unobservable from the physical system. Attack (2) blocks part or all of the output signal y
from the physical system to the controller, making the physical system unobservable from
the controller.

required to drive the system to its desired stable state over either a finite or an infinite time

horizon. Constraints to the inputs and/or states at any given time may be added as well [22].

The objective of the optimal controller presented in [2] is to generate a minimizes

the total energy used to drive the physical system to the desired state in a finite horizon.

Constraints are also added that, with high probability under the studied attack models

(1) limit the amount of energy used at each time step and (2) keep the states and inputs

within desired safety margins. The optimal control law can then be found using dynamic

programming, and the paper shows that the performance of the optimal controller is robust

subject to either (or both) of the random and adversarial attack models; meaning that, with

high probability, the NCS performs as desired while remaining within safety margins and

power requirements.

Unfortunately, it is well known in control theory that optimal controllers are not

robust to parameter uncertainty. In other words, if the mathematical model of the physical

system is even slightly inaccurate, then the performance of the controller selected may not

be as good as expected, and in the worst case, may even destabilize the physical system [22].

As a result, an extension to [2] may consider posing the problem as a robust control problem

rather than an optimal control problem.

20

www.manaraa.com

Replay Attacks

For many NCS’s utilizing an observer (as in Figure 3.2), a detector can be attached to the

observer to flag the operator of the NCS to potential faults and attacks. In the case where

the plant and the controller are governed by linear, time-invariant dynamics and the observer

is a Kalman Filter, a X 2 fault detector is widely used [29].

A X 2 fault detector leverages well-known properties of the Kalman Filter, specifically

that the error between predicted and observed output produced by the Kalman Filter will

follow a Gaussian distribution with mean 0 and a known covariance computable by the Kalman

Filter. If the actual errors observed over time deviates significantly from this distribution,

then the X 2 fault detector triggers an alert to the operator of the NCS [28].

In [29], it is shown that, supposing that the controller is an optimal controller, a replay

attack can be used to push the physical system away from a desired steady state into an

undesirable state. In this attack, the attacker does not need to know the actual state of the

physical system, nor does the attacker need to understand the system dynamics (the paper

notes that if the attacker knows this information, she can perform a much more subtle and

powerful attack, such as a false data injection attack). However, the attacker does need to

be able to modify a subset of the signals y received by the observer and the signals u sent

by the controller. Traditional IT security can be used to protect against replay attacks here

by ensuring the validity of the data passed through signals y and u. However, it may be

difficult to guarantee end-to-end security on all of these links, and if an attacker has cracked

the security on some or all of these links, a replay attack becomes possible.

The attack itself is simple; the attacker measures actual output from the system at

steady state for a period, and feeds that output into the observer, repeating as necessary.

The controller then chooses u according to the now false observer estimates. The it is proven

that the repeated output y combined with the controller’s choice of u will create the same

distribution of errors between predicted and observed output that the original system at

steady state did. Therefore, the detector never alerts the operator to a fault. As a result, the

21

www.manaraa.com

attacker can modify the input into the physical system as much as desired, thus compromising

the stability and performance of the system.

To mitigate against such an attack, a controller can add noise taken from a Gaussian

distribution to its choice of u as an “authentication signal,” which changes the distribution of

errors generated by the replay attack, making the replay attack detectable. However, adding

this noise makes the controller sub-optimal, meaning that it will require more time and/or

energy to drive the physical system to the desired steady state.

False Data Injection Attacks

A false data injection attack, as presented in [24] and [30] is similar to a replay attack. Like

a replay attack, the attacker desires to send arbitrary inputs into the plant and hide those

inputs from detection from a fault detector (such as the X 2 fault detector) by modifying the

outputs observed by the observer. Also like a replay attack, the attacker needs to be able to

modify a subset of the signals y and u at will. However, unlike a replay attack, the attacker

also needs knowledge about the dynamics governing the plant and the observer.

Given this knowledge, an attacker can generate false measurements y that allows him

to feed a constrained set of malicious inputs u into the system which can compromise the

stability and performance of the system. The computation to generate y is computationally

complex; however, an efficient approximation algorithm to do so is given in [30].

It is more difficult to protect against a false data injection attack than a replay attack.

One way to do so, however, is to independently verify the validity of a subset of measurements

y before they reach the observer [4].

3.3.2 Stability and Related Vulnerabilities

While there are many notions of stability, for simplicity, we only consider one here. An

equilibrium point (or state) of a system is asymptotically stable if it converges to that point

whenever it starts sufficiently close. For example, a ball that is placed anywhere in a bowl

22

www.manaraa.com

will roll to the bottom of the bowl, meaning that the bottom of this bowl is an asymptotically

stable equilibrium. In contrast, the top of a hill is also an equilibrium since a ball placed

there will stay there; however, if the ball is placed even a small distance away from the top

(or is bumped away by a small gust of wind), it will roll away. As such, the equilibrium at the

top of the hill is unstable. If the system has reached a stable equilibrium and is not moving

away, it is considered to be in steady state. For simplicity, whenever we say that a system is

stable, we imply that a desired equilibrium of the system is stable. The primary purpose of

feedback control (such as shown in Figure 3.1) is to create and stabilize equilibria [13].

As such, stability is a required property in most (if not all) NCS’s; stability implies

that the system is functioning as desired.

Destabilization Attacks

Instability in a NCS takes the form of cascading failures. For example, power systems are

designed as a network of high-voltage transmission systems, with multiple paths between

generators and customers. When one path is removed from the network (resulting from

natural disasters, failures, or even attacks), the flow of current shifts nearly instantaneously

to parallel paths. However, if a component on one of these parallel paths cannot handle the

additional load, it may also fail diverting the combined flow to a new path. These failures

can cascade throughout the entire network, causing the entire system to fail [18].

A destabilization attack is an attack on an NCS with the intent to cause a cascading

failure. In [35] and [7], vulnerability of a link or a set of links (regardless if the links exist

within the physical system, the controller, or along a communication path between them)

is defined in terms of the amount of energy an attacker would need to expend on that link

to cause a cascading failure. If an infinite amount of energy is required, then that link is

secure against any destabilization attack. Otherwise, it is considered to be vulnerable. More

precisely, the vulnerability of the link is the inverse of the amount of energy required to

destabilize it.

23

www.manaraa.com

It was then proven that a link is vulnerable if and only if it exists in a cycle (meaning

there exists a path through the system from the end of the link back to the beginning). This

has immediate consequences on NCS’s in the form shown in Figure 3.1, where every link on

the communication path between the plant and the controller are, of necessity, in a cycle

with each other, and are therefore vulnerable.

In [17], a hypothetical destabilization attack against a river system was explored. It

was shown that perturbations on a communication link between a person reading downstream

volumes of water and a person controlling an gate that releases water from a reservoir into

the river could potentially destabilize the river system, leaving mid-stream farmers without

water and potentially causing approximately $70 million in damages.

As the theory of destabilization attacks is used in Chapter 10 to perform a vulnerability

analysis on stock market data, Chapter 5 will be devoted to laying the groundwork for

analyzing the vulnerabilities of NCS’s from the point of view of a destabilization attack.

24

www.manaraa.com

Chapter 4

Modelling and Simulation of Markets

The purpose of this thesis is to perform a vulnerability analysis on models of the stock

market built using data. In this chapter, we provide a brief overview of how the stock market

functions, along with a sample of data sets available and which will be used later in this

project.

4.1 Overview of the Stock Market

The stock market is a feedback interconnection between a market mechanism–which we will

call the matching engine–and traders who buy and sell securities on the market.

As shown in Figure 4.1, traders take the stock price as inputs, along with external

information about the market (such as company publications, news sources, social network

opinions, etc.). Some traders may also pay to use the full limit order book as an input.

25

www.manaraa.com

Using these inputs, traders make decisions on securities which they choose to buy and/or sell.

These decisions are submitted to the stock market in the form of limit orders (see Section

4.2). The market receives these orders and determines how to match buyers with sellers in a

fair manner, and then processes the transaction between buyer or seller. We call this market

mechanism the matching engine. The limit order book (LOB) as well as security prices are

computed and published by the matching engine (see Section 4.3).

Figure 4.1 Overview of the Stock Market. Traders take stock prices and external information
as inputs and submit orders to the market as outputs. A matching engine within the market
takes orders and computes prices and the limit order book.

As shown in Figure 4.2, the matching engine computes prices and the LOB for a single

security independent of the limit orders submitted for all other securities. However, any

trader can submit orders for any set of securities desired. Furthermore, the market treats

each trader as anonymous. As such, due to the feedback interconnection with traders, there

may exist inter-price dynamic relationships, or in other words, causal dependencies, of the

price of one security on the prices of other securities. More on this in Chapter 10.

4.2 Limit Orders

A limit order is essentially an offer to buy or sell a specified quantity of shares of a specific

security at a specified price. Orders can also be submitted to modify or cancel existing orders.

26

www.manaraa.com

Figure 4.2 A more detailed view of Figure 4.1. Prices within the market engine of one
security are made independent of the orders submitted to other securities. Inter-price dynamic
relationships only exist because of trader behavior.

Seconds Since Midnight Order Number Ticker Action Side Quantity Price
(Eastern Time)

· · ·
34201.5799900 7777830 GOOG Add Bid (buy) 100 $680.00
34202.8024923 7777830 GOOG Cancel Bid (buy) 100 $680.00
34203.0659387 7781190 AAPL Add Ask (sell) 400 $100.00
34204.9782172 8020022 C Add Ask (sell) 200 $42.42

· · ·

Table 4.1 Example of a stream of orders arriving at the Matching Engine.

To further illustrate limit orders, consider the example in Table 4.1. In row 1, an order

is submitted at roughly 9:30 AM EST indicating that the trader is willing (and committed

to) buy up to 100 shares of Google at or below $680.00. A second later, in row 2, that same

trader submits a second order cancelling the order submitted in row 1, meaning the trader is

no longer obligated to buy should the opportunity become available.

A second later, in row 3, another trader submits an order indicating a commitment to

sell up to 400 shares of AAPL at or above $100.00. Note that, although the order number is

different than the order number for the order in the first row, this very well may be the same

27

www.manaraa.com

trader who submitted that first order. Or it may be a different trader. Order numbers are

tracked so that orders can be eventually modified or deleted. Orders, however, are submitted

anonymously.

Finally, a second later, another order is submitted indicating a commitment to sell up

to 200 shares of Citigroup at or above $42.42. And the process continues throughout the day.

NASDAQ and several other exchanges are open from 9:30 AM to 4:00 PM EST, and

the vast majority of orders are submitted within this window. However, some orders are also

accepted before and after this time range.

4.3 The Matching Engine, the Limit Order Book, and Prices

The Matching Engine is a market mechanism employed by several stock exchanges to track

incoming orders and to execute fair trades as soon as they become available. The state of

the Matching Engine is known as the Limit Order Book (LOB), which keeps track of all

outstanding commitments to buy and sell. Every security has its own LOB, computed only

with limit orders submitted for that security, meaning its LOB is independent from the LOB

of all other securities.

To describe the dynamics of the Matching Engine, we proceed with an example.

Consider a security EXPL which takes prices $1.00, $2.00, . . ., $10.00. Let x[t] ∈ Z10

represent the quantity of orders on the LOB at time t for each of these prices, with positive

indicating an offer to buy and negative indicating an offer to sell. For example, let

x[t]T =

[
0 3 5 1 0 0 −5 −2 0 0

]
.

This is interpreted as one or more offers to buy a combined quantity of 3 shares of EXPL at

$2.00, offers to buy 5 share of EXPL at $3.00, and an offer to buy 1 share of EXPL at $5.00.

There are also offers to sell 5 shares of EXPL at $7.00 and 2 shares of EXPL at $8.00.

28

www.manaraa.com

At the beginning of the day, the LOB always starts empty (if there are any outstanding

orders still on the LOB at the end of the previous day, they are automatically cancelled).

Therefore, x[0] = 0. Suppose that at time t = 1, a limit order arrives offering to sell 7 shares

of EXPL at $9.00. No trades are executed at this time as there are currently no offers to buy.

As such, all 7 shares are placed on the LOB, giving

x[1]T =

[
0 0 0 0 0 0 0 0 −7 0

]
.

Now suppose that at time t = 2, another order arrives to buy 5 shares at $1.00. Since

the first seller is only willing to sell at $7.00 or greater and this buyer is only willing to buy

at $1.00 or lower, no trade is executed at this time and this second order goes straight to the

LOB, resulting in

x[2]T =

[
0 5 0 0 0 0 0 0 −7 0

]
.

The gap between the best (highest) buy order (bid) and the best (lowest) sell order

(ask) is known as the bid-ask spread. Presently, the bid-ask spread is $9.00− $1.00 = $8.00.

For securities with higher liquidity, the bid-ask spread tends to be small, where

securities with lower liquidity have higher bid-ask spreads. Also, the spreads at the beginning

of the day tend to be larger, though they narrow quickly as more orders are added to the

book.

Frequently, the price of a security is computed based on the present bid-ask spread.

Sometimes the highest bid–called the bid price–is reported, sometimes the lowest ask–called

the ask price. The last price at which a trade was successfully executed–called the last price–is

often also reported as the price of the security. Generally, all three are reported, and it is up

to the user’s discretion which to use as the price. From this point forward, we will use the

last price as the price of the security.

29

www.manaraa.com

Let us fast forward a bit in the future, and suppose that at time t = 50, the LOB is

x[50]T =

[
5 2 3 15 7 −8 −12 −1 −7 −5

]
.

Now, the bid-ask spread has narrowed considerably to $6.00− $5.00 = $1.00.

Suppose that at time t = 51, a new order arrives to buy 4 shares of EXPL at $6.00.

On the LOB, there are orders to sell up to 8 shares at or above $6.00. Since this buyer is

willing to buy at the same price, a match can be made and an order executed. There are

enough sell orders at this price to fully execute the trade, and the number of sell orders

decreases from 8 down to 4, giving

x[51]T =

[
5 2 3 15 7 −4 −12 −1 −7 −5

]
.

The bid-ask spread has not changed. However, since a trade has executed, the price y(t)

of EXPL has moved from where it was previously to y(51) = $6.00. Note that if there

were multiple orders to sell at $6.00, the Matching Engine will prioritize the order that was

submitted first to be executed first.

Now suppose that at time t = 60 an order is submitted to sell 16 at $4.00. The LOB

currently has traders willing to buy at $5.00. The Matching Engine is legally required to give

the seller the best trade available, and so it will favor those traders first, trading all 7 shares

at to the seller at $5.00, a better price than the seller was offering. However, the seller has

9 more shares she is willing to sell, and there are buyers willing to buy at $4.00, and so 9

shares are executed at that price as well. This gives

x[60]T =

[
5 2 3 6 0 −4 −12 −1 −7 −5

]
.

30

www.manaraa.com

The bid-ask spread has increased to $6.00− $4.00 = $2.00 and the price is now p(60) = $4.00.

The process of a trade being executed at multiple price points such as that above is known

as walking the book.

Let an order be submitted at time t = 65 to buy 7 shares at $5.00. There are no offers

to sell at this price, so the trade is added directly to the LOB, giving

x[65]T =

[
5 2 3 6 7 −4 −12 −1 −7 −5

]
.

Since no trade was executed, the price remains at p(65) = $4.00. However, the bid-ask spread

has narrowed to $6.00− $5.00 = $1.00.

Finally, let an order be submitted at t = 70 to sell 12 shares at $5.00. There are offers

to buy up to 7 shares at this price, but no more. Therefore, 7 shares will be traded between

buyer and seller, and the remaining 5 shares in this order will be added to the LOB, giving

x[65]T =

[
5 2 3 6 −5 −4 −12 −1 −7 −5

]
.

The price is now p(70) = $5.00 and the bid-ask spread is $5.00− $4.00 = $1.00.

For actual securities, prices and time scales exist at much higher resolution (prices

can be added on the cent, not on the dollar, and orders can be recorded at a nanosecond

resolution). Nonetheless, the matching engine still follows the same dynamics as demonstrated

above. Figures 4.3 and 4.4 give examples of actual limit order books generated from the

ITCH data (discussed in the next section).

4.4 Data Sources

We now give a brief tour of available sources of financial data. While there are many sources

available, we consider only three in this work, namely the ITCH Data, Yahoo Finance, and

the Tour de Finance (TDF).

31

www.manaraa.com

Figure 4.3 The limit order book of C (Citigroup) on 3/7/14 at 9:30 AM EST. Prices are
binned so that every bar contains all limit orders across 5 cents, instead of showing the limit
orders at each cent. Red bars are buy (bid) orders and Blue bars are sell (ask) orders.

4.4.1 The ITCH Data

The ITCH1 data is a data feed offered by NASDAQ2 for a fee containing every change made

to the order book [31]. When parsed, this data takes a form similar to Table 4.1, but with

one subtle difference. Submitted limit orders that are marketable (i.e. can be executed

immediately) are not recorded. Likewise, no market order (a limit order where all shares are

to be executed at the best price available) is recorded. Only the results of the change to the

order book are recorded.

Since the ITCH data contains all changes to the order book ever made, it can be used

to compute the price y(t) (as well as the LOB) of any security on NASDAQ at any time

resolution.

The ITCH data contains roughly 5 GB of data of compressed binary data per day

across all 8,344 securities traded on the NASDAQ exchange. If converted into a human

readable CSV, each day fills about 20 GB of data. The ticker with the smallest CSV typically

requires 50 KB / day representing roughly 150 orders, whereas the largest requires 150 MB /

day representing roughly 3 million orders.

1 ITCH is not known to represent any acronym.
2 Other exchanges offer similar services

32

www.manaraa.com

Figure 4.4 The limit order book of C (Citigroup) across the day on 3/7/14. Figure 4.3 is a
cross section of the left edge of this image. The red line is the bid price over time, and all
pixels below the red line represent buy (bid) orders. The green line is the ask price over time,
and all pixels above the red line represent sell (ask) orders. Orders are binned in both time
and price.

4.4.2 Yahoo Finance

Yahoo Finance is a web utility offered gratuitously by Yahoo which reports prices of most

securities nearly in real time [48]. These prices are subject to network and processing delays

between NASDAQ and other exchanges and Yahoo.

Yahoo Finance also provides a utility to query historical data. However, this service

only allows historic daily closing prices of securities; if higher resolutions of data are desired,

other data sources will be needed.

4.4.3 The Tour de Finance

The Tour de Finance (TDF) was built by the author of this work as a platform to test and

compete algorithmic traders against each other, where an algorithmic trader is a program

that autonomously reads historic stock prices and other information and makes decisions on

a portfolio in which to invest.

33

www.manaraa.com

Every minute that NASDAQ is open, TDF queries Yahoo Finance for the current

prices of every security on the S&P 500 and saves those prices in a database. Traders–or

agents as they are called in TDF–are initially given $100, 000 of paper money and can invest

that cash across any or all of the securities in the S&P 500, buying securities at the current

best ask price and selling at the current best bid. As the TDF tracks changes in prices among

the securities, it also updates the values of each agent’s portfolios, computed as the cash the

agent would receive if it immediately sold off all securities. Participants can also write their

trading algorithms using any language and any platform they desire, connecting to TDF

through a secure RESTful API.

Since TDF uses real-time data, agents are prevented from “cheating” by using future

information to make present decisions. Because of this and other features implemented in

TDF, it is one of the most realistic open-source paper-trading platforms in existence today.

The TDF has been successfully been used as a class project in a Senior-Level Computer

Science Course (Linear Programming and Convex Optimization) to teach the principles of

learning and decision making under uncertainty. The class of approximately 30 students was

divided into 8 teams, each of which invented and tested their own trading algorithm. Several

of the teams were successful in earning money over a three-week period that not only included

a holiday (Thanksgiving), but also an election. One team earned an 8.6% return over this

period, whereas the S&P 500 index only increased by about 4.6% over the same horizon.

Figure 4.5 Performance of the top four teams in the Fall 2016 Linear Programming and
Convex Optimization Tour de Finance Competition.

34

www.manaraa.com

For the purposes of this project, the TDF is used a data collection and storage system

which allows us to collect and utilize minute-resolution stock data.

35

www.manaraa.com

Chapter 5

Vulnerability to Single-Link Destabilization Attacks

One objective in this thesis is to perform the vulnerability analysis presented in [8, 35]

on financial networks. As the results of those papers are critical to the understanding of this

work, we include them here.

5.1 Problem Formulation

Let

x[k + 1] = Ax[k] +Bu[k]

y[k] =

[
I 0

]
x[k] (5.1)

36

www.manaraa.com

represent the state space representation of the dynamics of the system for which we are

performing the vulnerability analysis1. We model an attack on this network system as an

additive external disturbance Fψ[k] to the system, where

x[k + 1] = Ax[k] +Bu[k] + Fψ[k]

y[k] =

[
I 0

]
x[k] (5.2)

Let the purpose of the attack be to destabilize the system. If we restrict ourselves

such that (5.1) is a stable system, then any bounded input into the system will produce a

bounded output. Or in other words, if ψ[k] is treated as an external disturbance, then it is

impossible for the attack Fψ[k] to destabilize the system.

However, if ψ[k] = x[k], or in other words, if the attacker uses information about

the state of the system to formulate an attack, then it may be possible to destabilize the

system (any choice of F that causes A+ F to have poles outside the unit circle is sufficient

to destabilize the system). As such, we will only consider the situation where ψ[k] = x[k].

We now transform the system into a DSF. Following the procedure in Chapter 2, we

rewrite (5.2) to be of the form

y[k + 1]

υ[k + 1]

 =

A11 A12

A21 A22

y[k]

υ[k]

+

B1

B2

u[k] +

F1

F2

ψ[k]

y[k] =

[
I 0

]y[k]

υ[k]

 (5.3)

1 Note that, as explained in Chapter 2, so long as rank(C) = p where y[k] ∈ Rp, we can transform any
system with output ŷ[k] = Cx[k] into the form (5.1).

37

www.manaraa.com

Taking the Z-transform of (5.3) yields

zY (z)

zΥ(z)

 =

A11 A12

A21 A22

Y (z)

Υ(z)

+

B1

B2

U(z) +

F1

F2

Ψ(z), (5.4)

where Y (z), Υ(z), and Ψ(z) are the Z-transforms of y[k], υ[k], and ψ[k] respectively.

Solving for Υ(z) in the second row of (5.4) gives

Υ(z) = (zI − A22)
−1A21Y (z) + (zI − A22)

−1B2U(z) + (zI − A22)
−1F2Ψ(z). (5.5)

Let

W (z) = A11 + A12(zI − A22)
−1A21, (5.6)

V (z) = B1 + A12(zI − A22)
−1A21B2, (5.7)

N(z) = F1 + A12(zI − A22)
−1A21F2. (5.8)

Then plugging (5.5) into the first row of (5.4) yields

zY (z) = W (z)Y (z) + V (z)U(z) +N(z)Ψ(z). (5.9)

Finally, defining D(z) = diag(W11(z), . . . ,Wpp(z)) and subtracting DY from (5.9), we get

Y (z) = Q(z)Y (z) + P (z)U(z) + ∆(z)Ψ(z), (5.10)

Q(z) = (zI −D(z))−1(W (z)−D(Z)), (5.11)

P (z) = (zI −D(z))−1V (z), (5.12)

∆(z) = (zI −D(z))−1N(z). (5.13)

Equation (5.10) represents a generalized destabilization attack model in the DSF

domain. However, for this work, we are only concerned with the vulnerability of this system

38

www.manaraa.com

to single-link attacks, a problem which we formalize in Problem 1. We then proceed to solve

the problem in Section 5.2

Problem 1 (Vulnerability Analysis of Networks to Single-Link Attacks). Let exactly one

entry ∆ij(z), i 6= j, in ∆(z) be non-zero. Given the generalized attack model (5.10), compute

the vulnerability vij, defined as the inverse2 of the minimum magnitude ‖∆ij(z)‖∞ of an

additive perturbation on link Qij(z) (which may or may not be zero3) required to destabilize

the entire system.

5.2 Solution

To find the minimum magnitude ‖∆ij‖∞ required to destabilize the system, we lever-

age the Small Gain Theorem, which states that the system will remain stable as long

as ‖∆ij(z)‖∞‖Mij(z)‖∞ < 1, where Mij(z) is the closed-loop transfer function seen by ∆ij(z).

Therefore, the smallest perturbation necessary to destabilize the system occurs when

‖∆ij(z)‖∞‖Mij(z)‖∞ = 1, (5.14)

or in other words,

‖∆ij(z)‖∞ =
1

‖Mij(z)‖∞
. (5.15)

Since the vulnerability of this link is the inverse of the quantity (5.15), we compute the

vulnerability of link Qij(z) as

vij = ‖Mij(z)‖∞. (5.16)

The challenge now is to compute Mij(z).

2 The smaller the vulnerability, the more “effort” needed to destabilize the system, hence the inverse.
3 Previous work on vulnerability requires that the attacker take advantage of existing infrastructure in

the system, and so a link is considered to be invulnerable if the link doesn’t actually exist. In other words,
vij = 0 when Qij = 0. In this work, however, we assume that it is easy for an attacker to create a new link
where one doesn’t exist (more discussion on this in Chapter 10), as such we do not artificially force the
vulnerability of a link to zero if Qij(z) = 0.

39

www.manaraa.com

Starting with (5.10), solve for Y (z) in terms of U(z) and Ψ(z) to get

Y (z) = (I −Q(z))−1P (z)U(z) + (I −Q(z))−1∆(z)Ψ(z). (5.17)

The relationship of inputs to outputs is given by G(z) = (I −Q(z))−1P (z) and the

transfer function describing how Ψ(z) affects the outputs is given by (I −Q(z))−1∆(z). As

discussed previously, since no bounded external input can destabilize the system, we only

consider the case where Ψ(z) = Y (z) (which is equivalent to ψ[k] =

[
x1[k] . . . xp[k]

]T
=

y[k])4.

Since ∆(z) is zero everywhere except at ∆ij(z), then the transfer function seen by the

perturbation ∆ij(z) on link Qij(z) is found from (ignoring inputs U(z)):

Y1
...

Yj
...Yp

= H(z)

0

...

∆ij(z)Yj(z)

...

0

, (5.18)

H(z) = (I −Q(z))−1. (5.19)

From this, we can see that Yj(z) = Hji(z)∆ij(z)Yj(z), therefore the transfer function seen

by the perturbation ∆ij(z) is Mij(z) = Hji(z). Therefore, we can precisely define the

vulnerability of any link Qij(z) as

vij = ‖Hji(z)‖∞ = ‖
[
(I −Q(z))−1

]
ji
‖∞. (5.20)

4 Note that since Q(z) and ∆(z) are both p× p matrices of rational transfer functions, attack ∆(z)–with
δij(z), i 6= j–represents an additive perturbation of link (i, j) in Q(z).

40

www.manaraa.com

Chapter 6

Vanilla Passive Network Reconstruction

Passive network reconstruction is the process of identifying a structured representation

of a system using observed (as opposed to controlled) input-output data and some additional

information about the structure of a system. In this chapter, we improve on the existing

algorithm for the passive reconstruction of dynamical structure functions through the use of

an evolutionary algorithm. We also demonstrate the convergence of this algorithm to the

proper network as input-output data is received over time.

This chapter is adapted from [47], which was submitted to the 2017 IEEE Conference

on Decision and Control as a result of this thesis. In addition to the results presented in [47],

this chapter also includes connections to the vulnerability analysis discussed in Chapter 5.

41

www.manaraa.com

6.1 Introduction - Network Reconstruction

System Identification is the process of recovering a “black box” representation of a system–

such as a transfer function–from input-output data. Network reconstruction takes this process

one step further and attempts to find a structured representation of the system with more

structural information than the input-output behavior.

Unfortunately, network reconstruction on input-output data is an ill-posed problem

since input-output data, by itself, does not have enough information to build anything more

detailed than a black box model. Therefore, network reconstruction requires additional a

priori information about the structure of the system to recover the system dynamics along

with a stronger notion of its structure.

If we were to recover the state space representation of a system from input-output

data, the amount of structural information necessary to perform the reconstruction is large,

and can become prohibitively large in many real-world applications. Therefore, we are

instead concerned with the reconstruction of a signal structure representation of the system–

specifically the dynamical structure function–which requires significantly less structural

information to be reconstructed.

The majority of work in the network reconstruction literature focuses on reconstructing

a system using frequency domain representations, such as the dynamical structure function,

linear dynamical graphs, or directed information graphs [16, 27, 34]. In this chapter, we

consider passive network reconstruction of a time domain representation of the dynamical

structure function as opposed to the frequency domain.

Reconstruction algorithms of the dynamical structure function were originally devel-

oped for active reconstruction in areas where experiments on a system are possible, such as

biochemical reaction networks [1, 49]. Passive reconstruction is applicable to a much larger

range of systems since we do not need to be able to affect the network to learn its structure,

e.g. financial systems or social media influence networks [11].

42

www.manaraa.com

Reconstructing networks in the time domain allows system structure to be determined

directly from data, without requiring a transformation to the frequency domain which could

introduce errors due to approximation methods or noisy data. Moreover, reconstruction

directly from data is more meaningful than through a transformation–the understanding of

the structure and dynamics of a network can be learned incrementally over time, as opposed

to other network reconstruction techniques which only give a picture of the network once all

the data has been collected.

For instance, Figure 6.1 shows how the sparsity pattern and dynamics of the system

can slowly be learned over time as more data is collected from the system. After five time

steps, the reconstructed network appears fully connected. As more data is collected, we see

after 100 time steps that the weight of the connections (i.e. the infinity norm of the transfer

functions on the associated links) appear closer to the final network structure. Finally, after

500 time steps, we have gathered enough data to determine the correct sparsity structure

and dynamics of the system.

Figure 6.1 As data streams in, passive network reconstruction can build a more accurate
representation of the network. Once there is enough data, then network reconstruction can
recover the network perfectly. Note that the network graphs were generated using the same
process as described in Figure 6.4.

Passive reconstruction of the dynamical structure function in the time domain was

first developed in [10] and this chapter builds directly off the work presented in that paper. A

key difference is the use of an evolutionary algorithm to fit the convolutional models (step 8

43

www.manaraa.com

of the algorithm presented in Section 6.3). This change has provided the following significant

advantages:

• The full dynamics of this network can be reconstructed with much less data (the

example in Section 6.5 of this paper can now be reconstructed with with r = 100,

whereas the previous algorithm required r ≥ 600, where r is related to the amount of

data required to be collected)

• The original algorithm required an initial guess of the parameters of the convolutional

model, whereas the evolutionary algorithm does not require an initial guess.

• The original algorithm would only converge if an appropriate initial guess of the

parameters of the convolutional model were chosen, which was often hard to do

correctly. The evolutionary algorithm always converges, and if the necessary and

sufficient conditions for reconstruction are met, it converges to the correct answer.

Furthermore, the original work indicated that an r ≥ T can be used (where T is the

actual amount of data collected and r is at least the amount of time required for the impulse

responses of all links in the network converge to zero), but the original paper only covered in

detail the case where r = T . This chapter clarifies how to perform network reconstruction

in the general case where r ≥ T . Furthermore, in Section 6.6, this work demonstrates the

convergence of the algorithm to the actual network being reconstructed as both r and T

increase, showing that r should be chosen to be strictly larger than T for the algorithm to

converge to the true network.

6.2 Problem Formulation

The basic problem being solved by passive network reconstruction is to take observed input-

output data from a system and some a priori understanding of the structure of the system

and recover the unique DSF that best fits that data.

44

www.manaraa.com

Formally, consider a dynamic system taking m inputs and producing p outputs

according to the following relationship:

x(t+ 1) = Ax(k) +Bu(t),

y(t) = Cx(t), (6.1)

where u(t) ∈ Rm and y(t) ∈ Rp are measured, but where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

and x(t) ∈ Rn are unknown.

Let Du ∈ RT×m be the time-domain measured values1 of the m inputs into this system

over times 1, 2, . . . , T . Likewise, let Dy ∈ RT×p be the measured values of the p outputs of

the system at times 1, 2, . . . , T generated by inputs Du. Define ũ(t) ∈ Rm to be the t’th row

of Du and define ỹ(t) ∈ Rp to be the t’th row of Dy. Let Du and Dy be measured without

error.

Furthermore, let (Q(z), P (z)) be the unknown, but unique Dynamical Structure

Function (DSF) generated from (6.1) as described in Chapter 2, and assume that every link

in Q(z) and P (z) are stable and strictly proper. This DSF maps inputs U(z) in the frequency

domain to outputs Y (z), also in the frequency domain according to the following relationship:

Y (z) = Q(z)Y (z) + P (z)U(z). (6.2)

Let

y(t) = Q(t) ∗ y(t) + P (t) ∗ u(t) (6.3)

be the convolutional representation of the system’s DSF found by taking the inverse Z-

transform of (6.2), where ∗ is the convolution operator.

1 The term passive in the passive reconstruction problem comes from the idea that inputs are measured
but not controlled.

45

www.manaraa.com

Due to the fact that this is an LTI, strictly causal, and stable network, (6.3) can be

rewritten as

ŷ = L̂~x+ e, (6.4)

where ŷ ∈ R(T−1)p contains only known values from Dy, L̂ ∈ R(T−1)p×r(p2+pm) contains only

known values from Dy and Du, and ~x ∈ Rr(p2+pm) contains the unknown values of Q(t) and

P (t) that need to be reconstructed. Vector e ∈ Rr(p2+pm) represents the error in mapping

any choice of ~x to ŷ.

And, as will be discussed later in this work, the impulse response of every link Qij(t)

can also be given by the following function:

Qij(t) = aqijδ(t,0) +

wqij∑
n=0

bn,qij(cn,qij)
t, (6.5)

where wqij is the number of delays in the corresponding link, aqij =
∑wqij

n=0 bn,qij , and δt,0 is

the Kronecker delta (with value of 1 at t = 0 and 0 otherwise).

The first piece of the network reconstruction problem on stable discrete-time LTI

systems, therefore, is to choose the unique to minimize the error e generated from mapping ~x

to ŷ. Formally, choose the unique ~x∗ such that

~x∗ = arg min
~x
‖e‖2 = arg min

~x
‖ŷ − L̂x̂‖2. (6.6)

Let Q̃ij(t) be the element of x̂∗ corresponding to link (i, j) in Q at time t. Then the

second piece of the network reconstruction problem on stable discrete-time LTI systems is to

choose a function Qij(t) of the form (6.5) such that

εij(t) = |Q̃ij(t)−Qij(t)| (6.7)

is minimized (and likewise for P).

46

www.manaraa.com

6.3 The Vanilla Passive Network Reconstruction Algorithm

Figure 6.2 The Vanilla Passive Network Reconstruction Algorithm.

In this section, we outline the algorithm–which we call the Vanilla Passive Network

Reconstruction (VPNR) Algorithm–for solving passive reconstruction of stable discrete-time

LTI networks. This algorithm was originally outlined in [10], though we also propose a

few enhancements to this algorithm that have had led to major performance and usability

improvements on the algorithm.

The purpose of the VPNR algorithm is to take input data, output data, and some

a priori knowledge about the system structure (such as entries in P (z) that are known to

be zero) and reconstruct Q(z) and P (z) as exactly as possible using this information only.

To do so, the VPNR is broken up into a nine-step process, summarized in Figure 6.2 and

outlined below.

1. Prepare the Data: Let Du ∈ RT×m and Dy ∈ RT×p be the input and output data

respectively as defined as in the problem formulation.

2. Choose r: Since the data is represented in the time domain, we will concentrate most

of our efforts on the time domain representation of the DSF as expressed in (6.3). By

nature of the inverse Z-transform, the convolutional model is the impulse response of

the system. In other words,

Qij(−∞), . . . , Qij(−1), Qij(0), Qij(1), . . . , Qij(r), . . . , Qij(∞) (6.8)

47

www.manaraa.com

are the outputs of link (i, j) resulting at times −∞, . . . ,−1, 0, 1, . . . , r, . . . ,∞ from

an impulse input into that link–though not necessarily an input into the system–of

magnitude 1 at time 0, and likewise for each Pij(t).

Since (6.1) is a linear, time invariant (LTI) system, the impulse at time t = 0

cannot create a non-zero output at any time t < 0. Furthermore, we have assumed

that the dynamics on every link are strictly causal. This means that the impulse input

at time t = 0 cannot create a non-zero output until some time t > 0. We have also

assumed that every link is stable, which means that there exists some finite r such that

the output resulting from the impulse is 0 for every time t > r. Due to these three

facts, we can truncate the impulse response (6.8) to

Qij(1), . . . , Qij(r) (6.9)

with Qij(t) for t ≤ 0, t > r understood to be 0 (and likewise for P).

As such, we choose a value r ≤ T large enough that all links in P (t) and Q(t)

have time to converge. Since we do not know how large this must be before performing

reconstruction, this step may require some trial and error.

3. Construct ŷ and L̂ from Data: By definition of convolution, and utilizing the fact that

Q(t) = 0 and P (t) = 0 for t ≤ 0 and t > r, (6.3) can be expanded and expressed using

the following equations:

48

www.manaraa.com

y(1) = 0,

y(2) =

[
Q(1) P (1)

]y(1)

u(1)

 ,

y(3) =

[
Q(2) Q(1) P (2) P (1)

]

y(1)

y(2)

u(1)

u(2)

,

...

y(r + 1) =

[
Q(r) · · · Q(1) P (r) · · · P (1)

]

y(1)

...

y(r)

u(1)

...

u(r)

,

...

y(T) =

[
0 · · · Q(r) · · · Q(1) 0 · · · P (r) · · · P (1)

]

y(1)

...

y(T − 1)

u(1)

...

u(T − 1)

.

These equations can be rewritten using matrix multiplication giving the following

equations (which are the Toeplitz representation of the network):

ȳ(T) = Q̄(r)ȳ(T − 1) + P̄ (r)ū(T − 1), (6.10)

49

www.manaraa.com

where

ȳ(T) =

[
y(1)T y(2)T · · · y(T)T

]T
,

ȳ(T − 1) =

[
y(1)T y(2)T · · · y(T − 1)T

]T
,

ū(T − 1) =

[
u(1)T u(2)T · · · u(T − 1)T

]T
,

Q̄(r) =

0 · · · · · · 0

Q(1)
.

...

Q(2) Q(1)
. . .

...

...
...

. . . 0

Q(r) Q(r − 1) · · · Q(1)

0 Q(r) · · · Q(2)

...
...

...
...

0 0 · · · Q(r)

,

P̄ (r) =

0 · · · · · · 0

P (1)
.

...

P (2) P (1)
. . .

...

...
...

. . . 0

P (r) P (r − 1) · · · P (1)

0 P (r) · · · P (2)

...
...

...
...

0 0 · · · P (r)

. (6.11)

Note that the stability assumption allows Q̄(r) and P̄ (r) to be matrices of finite

dimension.

Since each Q(i) ∈ Rp×p is a hollow matrix, each Q(i) contains exactly p2 − p

unknown values. Similarly, each P (i) ∈ Rp×m, each P (i) has exactly pm unknown

50

www.manaraa.com

values. Therefore, in Q̄(r) and P̄ (r) combined, there are exactly r(p2−p+pm) unknown

values.

Rewrite (6.10) as

ȳ(T) =

[
Q̄(r) P̄ (r)

]ȳ(T − 1)

ū(T − 1)

 .
Taking the transpose of both sides, we get

ȳ(T)T =

[
ȳ(T − 1)T ū(T − 1)T

]Q̄(r)T

P̄ (r)T

 .
Expanding this and removing the known y(1) = 0 yields:

[
y(2)T · · · y(T)T

]
=

[
y(1)T · · · y(T − 1)T u(1)T · · · u(T − 1)T

]

Q(1)T · · · Q(r)T · · · 0

...
. . .

...
. . .

...

0 · · · Q(1)T · · · Q(r)T

P (1)T · · · P (r)T · · · 0

...
. . .

...
. . .

...

0 · · · P (1)T · · · P (r)T

, LX (6.12)

Now, stack each Q(t) into a vector in row-major order2, to produce the unknown

vector ~q(t) ∈ Rp2 . Likewise stack P (t) into the unknown vector ~p(t) ∈ Rpm. Stack each

2 Throughout this work, we define ~m to be the vectorized form of M in row-major order; e.g. if

M =

a b c
d e f
g h i

 ,
then

~m =
[
a b c d e f g h i

]T
.

51

www.manaraa.com

of the resulting vectors in a larger vector ~x ∈ Rr(p2+pm) given as follows:

~x =

[
~q(1)T · · · ~q(r)T ~p(1)T · · · ~p(r)T

]T
. (6.13)

We can then write (6.12) as

ŷ = L̂~x, (6.14)

with ŷ ∈ R(T−1)p is given by

ŷ =

[
y(2)T · · · y(2)T · · · y(T)T · · · y(T)T

]
, (6.15)

and L̂ ∈ R(T−1)p×r(p2+pm) is

L̂ =

y(1)T 0 0 · · · 0 0 0 · · · u(1)T 0 0 · · · 0 0 0

0
. . . 0 · · · 0

. . . 0 · · · 0
. . . 0 · · · 0

. . . 0

0 0 y(1)T · · · 0 0 0 · · · 0 0 u(1)T · · · 0 0 0

...
...

...
...

y(r)T 0 0 · · · y(1)T 0 0 · · · u(r)T 0 0 · · · u(1)T 0 0

0
. . . 0 · · · 0

. . . 0 · · · 0
. . . 0 · · · 0

. . . 0

0 0 y(r)T · · · 0 0 y(1)T · · · 0 0 u(r)T · · · 0 0 u(1)T

...
...

...
...

y(T − 1)T 0 0 · · · y(T − r)T 0 0 · · · u(T − 1)T 0 0 · · · u(T − r)T 0 0

0
. . . 0 · · · 0

. . . 0 · · · 0
. . . 0 · · · 0

. . . 0

0 0 y(T − 1)T · · · 0 0 y(T − r)T · · · 0 0 u(T − 1)T · · · 0 0 u(T − r)T

(6.16)

4. Utilize Hollowness of Q(t): Since each Q(i) is hollow, we can remove all entries of ~x

corresponding to a Qjj(i) for all i = 1, . . . , r and j = 1, . . . , p. These will be indices

i, i(p+ 2), i(2p+ 3), . . . , i ((p− 2)p+ (p− 1)) , ip2 for i = 1, . . . , r. We also remove the

corresponding columns of L̂, giving us L̂ ∈ R(T−1)p×r(p2−p+pm).

5. Leverage A Priori Information: Define

M̂ = L̂K̂, x̂ = K̂T~x, (6.17)

52

www.manaraa.com

where K̂ encodes all a priori structural information we may have. To construct K̂, we

first define K̄ ∈ R(p2−p+pm)×k as a static matrix given by

K̄ =

K̄11 K̄12

K̄21 K̄22

 ,
where K̄ represents the a priori information known about the frequency domain repre-

sentation of the network. Specifically, K11 is the a priori information about the system

that indicates how the reduced elements of Q(z) map to the original elements of Q(z),

K12 is the a priori information that indicates how the reduced elements of Q(z) map to

the original elements of P (z), etc.

For the time-domain representation, K̄11 operates on all Q(i) and represents the

a priori information mapping the reduced elements of Q(i) to the original elements of

Q(i), and so forth. This gives us

K̂ =

K̄11 · · · 0 K̄12 · · · 0

...
. . .

...
...

. . .
...

0 · · · K̄11 0 · · · K̄12

K̄21 · · · 0 K̄22 · · · 0

...
. . .

...
...

. . .
...

0 · · · K̄21 0 · · · K̄22

A common choice for K̄ is to encode target specificity, or in other words, to

encode the assumption that P (z) is diagonal. Suppose that m = p = 3. Then, we can

53

www.manaraa.com

encode target specificity with the following choice of K̄

K̄11 = I6×6 (No known zero links in Q(z))

K̄12 = 06×9 (No known Q(z) mappings to P (z))

K̄21 = 09×6 (No known P (z) mappings to Q(z))

K̄22 =

1 0 0 (P11(z) free)

0 0 0 (P12(z) = 0)

0 0 0 (P13(z) = 0)

0 0 0 (P21(z) = 0)

0 1 0 (P22(z) free)

0 0 0 (P23(z) = 0)

0 0 0 (P31(z) = 0)

0 0 0 (P32(z) = 0)

0 0 1 (P33(z) free)

(6.18)

Target specificity is a sufficient choice of K̄ ensuring reconstructability in the

frequency domain and in the time domain, but it is not necessary. The necessary

condition requires that K̂ encode the same amount of information as target specificity

[6, 10, 16, 33].

6. Fit the Impulse Responses: Given the definitions in the previous steps, we can rewrite

(6.3) as

ŷ = M̂x̂+ e, (6.19)

where ŷ and M̂ contain only known values from our input-output data, where x̂ contains

the unknown values we wish to fit, and where e represents the error of the fit for any

choice of x̂. Thus, we wish to choose x̂ such that e is minimal according to some metric.

54

www.manaraa.com

The VPNR minimizes e in the 2-norm sense, or in other words, chooses x̂ according to

x̂∗ = arg min
x̂
‖e‖2 = arg min

x̂
‖ŷ − M̂x̂‖2,

which is solved using ordinary least squares. Thus, the VPNR can choose a unique x̂∗

if the following conditions are met:

• M̂ = L̂K̂ is injective

• ŷ ∈ R(M̂) (where R(M̂) is defined as the range of M̂)

Note that variations on the VPNR Algorithm can be created by using a different

metric for e. For example, if choose x̂ according to

x̂∗ = arg min
x̂
‖ŷ − M̂x̂‖2 + α‖x̂‖1,

(which can be solved using Lasso Regression with α selected by optimizing the Akaike

Information Criterion), then the solution becomes robust to measurement noise on the

inputs and outputs. We call the modified algorithm using Lasso Regression the Robust

Passive Network Reconstruction (RPNR) Algorithm, which we will discuss in Chapter

7.

7. Extract Links from x̂∗: Recall that we stacked the unknown values of Q(t) and P (t)

into vector x̂. Now that x̂∗ is known, we extract the entries corresponding to each link

from x̂∗ and into Q̃ij(t) and P̃ij(t).

8. Fit the Convolutional Models: Theorem 2 in [10] shows that the entries of the inverse

Z-transform of Q(z) take the form

Qij(t) = aqijδ(t,0) +

wqij∑
n=0

bn,qij(cn,qij)
t, (6.20)

55

www.manaraa.com

where wqij is the number of delays in the corresponding link, aqij =
∑wqij

n=0 bn,qij , and

δt,0 is the Kronecker delta.

The purpose of aqijδ(t, 0) in this equation is to force Qij(0) = 0. In other words,

(6.20) can be rewritten as:

Qij(t) =

 0 t = 0∑wqij

n=0 bn,qij(cn,qij)
t t > 0

.

Note that Pij(t) takes the form as well.

In order to find such a function, we simply need to choose the 2(wqij) parameters

bn,qij and cn,qij such that (6.3) best fits the data in Q̃ij(t), meaning, we wish to choose

the parameters such that |Qij(t)− Q̃ij(t)| is minimized. Unfortunately this convolution

function is nonlinear. In [10], it was recommended that a non-linear curve fitting

algorithm be used to fit these parameters. However, in this chapter, we suggest the

use of an evolutionary algorithm instead, which has considerable advantages over the

process presented in [10].

Though the evolutionary algorithm is slower than non-linear curve fitting, it does

not require an initial starting guess for the parameters. Furthermore, the evolutionary

algorithm can consistently reconstruct the network, while non-linear curve fitting

required a good guess of the starting parameters to successfully reconstruct. Finally,

the evolutionary algorithm can successfully reconstruct networks with much smaller

values r than non-linear curve fitting, making the method more scalable both in time

and in memory.

56

www.manaraa.com

9. Convert to Frequency Domain: The frequency-domain representation of the link, Qij(t)

can be recovered using the following equations:

αn,qij = bn,qijcn,qij ,

βn,qij = cn,qij ,

Qij(z) =

wqij∑
n=0

αn,qij

z − βn,qij
, (6.21)

and likewise for Pij(z).

6.4 Assumptions Necessary for Reconstruction

In order to reconstruct a network, the following assumptions must hold for the data, the a

priori information known about the system, and the underlying network that generated the

data (note that if these assumptions hold, we are able to reconstruct a network perfectly):

• Linearity: The underlying network generating the input-output data must have linear

dynamics. This is due to the fact that we are reconstructing DSFs, which presently

only represent linear dynamics.

• Stability: The underlying network generating the input-output data must be stable.

This allows the Toeplitz representation of the network in (6.10) to be finite dimensional.

• Strict Causality: The underlying network generating the input-output data must be

strictly causal, meaning changes in the present only make an impact on the network

strictly in the future. This also implies that the impulse responses at time t = 0 are

Qij(0) = 0 and Pij(0) = 0.

• Informativity Conditions: It must be known that the underlying system generating

the data is target specific or something informationally equivalent (see Step 5 and

[10, 16] for more information).

57

www.manaraa.com

• Non-noisy Data: The inputs and outputs must be measured perfectly, with no noise.

We relax this assumption in the next chapter.

• Richness of Data: We require that the input-output data be “rich enough” to

reconstruct. This condition can be checked directly. The data is “rich enough” if M̂ is

injective and if ŷ is in the range of M̂ (see Theorem 1 in [10]).

• Large Enough r: We require that r be chosen large enough to capture the full

dynamics of the system (see Section 6.6).

• Large Enough T : We require that enough data be collected that we don’t overfit the

least squares model. Further, T should be strictly larger than r (see Section 6.6).

6.5 Numeric Example

Consider the following discrete-time LTI state space representation of some system3:

x[k + 1] =

0.75 0 0 0 0 1.2

−0.1 −0.35 0 0 0 0

0 0 0.85 −1.0 0 0

0 −0.73 0 0.95 0 0

0 0 0.43 0 −0.6 0

0 0 0 0 0.2 0.55

x[k] +

1.4 0 0

0 −.25 0

0 0 0.75

0 0 0

0 0 0

0 0 0

,

y =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

x[k]. (6.22)

3 The example (6.22) is nearly identical to the example presented in [10], differing only in that B13 = 0
here where in [10], B13 = −1.4. As such, this example will be target specific–meaning that it has a diagonal
P (z)–where the example in [10] was not. However, as explained in [10], target specificity is a sufficient
condition allowing the reconstruction process; but it is not necessary.

58

www.manaraa.com

The dynamical structure function (Q(z), P (z)) representation of this system is

Q(z) =

0 0 41.28

(4z−3)(5z+3)(20z−11)

−2
20z+7

0 0

0 292
(20z−17)(20z−19) 0

P (z) =

5.6

4z−3 0 0

0 −5
20z+7

0

0 0 15
20z−17

 . (6.23)

As we are moving in the direction of Blind Reconstruction of Discrete-Time Networks–

which will not reconstruct P (z); in fact, we will ignore P (z) from this point forward and

concern ourselves only with Q(z). Note that [10] demonstrates the numeric reconstruction of

a non-target-specific P (z).

We have that the convolution representation of Q(z) (rounded to three decimal places)

is given by:

Q12(t) = 0

Q13(t) = 0.510(0.750)t − 0.110(−0.600)t − 0.816(0.550)t + 0.416δ(t,0)

Q21(t) = 0.286(−0.350)t − 0.286δ(t,0)

Q23(t) = 0

Q31(t) = 0

Q32(t) = 0.882(0.850)t − 0.882δ(t,0) (6.24)

The magnitude and the vulnerability of the links in Q(z) are given in Table 6.1, and

graphical representations of the magnitude and vulnerabilities are shown in the top row of

Figure 6.4.

59

www.manaraa.com

The values in Table 6.1 are also normalized such that the largest magnitude is 1.0

(and likewise for vulnerability) as the value of these measures tend to be sensitive to slight

perturbations in the DSF, whereas the relative values of these measures tend to be insensitive.

As such, the Normalized Magnitude and Normalized Vulnerability should be the values used

to compare any reconstructed network to the actual network. Figure 6.4 and subsequent

Figures are constructed using the normalized values.

Link Magnitude Normalized Vulnerability Normalized
Magnitude Vulnerability

(1, 2) 0 0 1.133 0.003
(1, 3) 0.573 0.006 28.756 0.074
(2, 1) 0.154 0.002 195.200 0.503
(2, 3) 0 0 387.471 1.000
(3, 1) 0 0 7.6934 0.020
(3, 2) 97.333 1.000 0.5710 0.002

Table 6.1 The size (‖Qij(z)‖∞) and the vulnerability (‖(I − Q(z))−1ji ‖∞) of links (i, j) in
the actual Q(z) given by Equation (6.23).

Random inputs Du–with each [Du]ij selected uniformly from [−1, 1]–were chosen to

stimulate the system. Note that these inputs need not be controlled, they just need to excite

the system enough that the conditions outlined in Step 6 of the VPNR Algorithm are met.

However, experiments could be designed to choose these inputs in non-random manners, so

long as the aforementioned conditions continue to be met. For this example, the inputs were

generated for T = 601 time steps. Then the inputs were simulated on the state space model

given in (6.23) to construct outputs Dy.

Choosing4 r = 100, the methodology described above was then used on Du and Dy

in an attempt to reconstruct the system. The convolution representation of reconstructed

4 One method for selecting r is to choose some starting r, such as r = 100, and plot the impulse responses
to each link such as those shown in Figure 6.3. If all links have time to converge to 0 at some t < r, then r
was chosen to be sufficiently large. If not, a larger r will need to be chosen.

60

www.manaraa.com

system found through this method (rounded to three decimal places) is as follows:

Q12(t) = 0.197(0.011)t + 2.742(−0.001)t − 0.143(0.001)t − 0.037(0.013)t − 2.758δ(t,0)

≈ 0

Q13(t) = 0.510(0.750)t − 0.111(−0.600)t − 0.816(0.550)t − 0.417δ(t,0)

Q21(t) = 0.086(−0.351)t + 0.2(−0.35)t − 0.286δ(t,0)

≈ 0.286(−0.35)t − 0.286δ(t,0)

Q23(t) = −4.798(0.010)t + 2.026(0.013)t + 2.392(−0.042)t − 3.396(−0.035)t + 3.776δ(t,0)

≈ 0

Q31(t) = −2.730(−0.001)t + 0.916(−0.027)t − 0.894(−0.021)t − 1.027(−0.003)t + 3.735δ(t,0)

≈ 0

Q32(t) = −8.908(0.854)t + 8.04(0.949)t − 0.297(0.081)t + 1.154(0.006)t + 0.012δ(t,0)

≈ −0.868(0.85)t − 0.297(0.081)t − 1.165δ(t,0) (6.25)

Notice that the coefficients in Equation (6.25) are nearly identical to those in Equation

(6.24). Figure 6.3 further demonstrates the goodness of this fit by comparing the impulse

response of the reconstructed network with the impulse response of the actual network, which

are nearly identical. Furthermore, the normalized magnitudes and vulnerabilities of the links

in the reconstructed network are very close to those in the original network as shown in Table

6.2 and Figure 6.4.

61

www.manaraa.com

Figure 6.3 The impulse responses reconstructed using the Vanilla Network Reconstruction
Algorithm on non-noisy data. The green dashed line is the actual convolution model given
by Equation (6.24) (for Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution
model as the exact fit is at 0 for all t). The red dots are the values of the impulse response
Qij(t) contained in x̂ and found using least squares. The blue line is the reconstructed
convolution model from Equation (6.25) using the evolutionary algorithm to fit an equation
of the form (6.20) to the red dots.

62

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 0.002 0.000 4.297 0.002

(1, 3) 0.569 0.006 131.470 0.075

(2, 1) 0.156 0.002 895.966 0.512

(2, 3) 0.015 0.000 1748.452 1.000

(3, 1) 0.010 0.000 29.208 0.017

(3, 2) 102.256 1.000 1.835 0.001

Table 6.2 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) reconstructed using the Vanilla Passive Reconstruction Algorithm.

Magnitude Vulnerability

Original

Vanilla

Figure 6.4 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 6.2. The darkness of each link is proportional to the
normalized magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize
smaller links.

63

www.manaraa.com

6.6 On the Convergence of the Vanilla Passive Network Reconstruction Algo-

rithm

We can also use this example to explore the quality of reconstruction as we change the values

of r and T . Let Qij(t) be the true value at t for the impulse response of link (i, j), and

let Q̂ij(t) be the value of t of the reconstructed impulse response of the same link. Define

ε̂ij(t) = |Qij(t)− Q̂ij| and let ê = 1
T (p2−p)

∑T
t=1

∑p
i,j=1;i 6=j êij(t) be the average error between

reconstructed and true impulse responses of the network over all links and all time.

For each choice of r and T , we run 20 experiments, each with a different randomly-

generated Du and resultant Dy, recording the average of ê for all these experiments. The

results of this “ranging” experiment are presented in Figure 6.5. Notice that, as r and T

increase, the error ê converges to 0, meaning that the network is reconstructed exactly. Thus,

it is necessary to choose r and T large enough to recover the network, as expected.

Furthermore, for large enough T , the network has converged by r = 100 which is

roughly the same time at which all the impulse responses in Figure 6.3 converge to 0. Finally,

note that there is always some error if r is close to T , thus there should always be enough

data such that T is strictly larger than r.

Figure 6.5 The quality of reconstruction of the VPNR Algorithm on the example in Section
6.5 at various levels of r and T .

64

www.manaraa.com

6.7 Conclusions

In conclusion, we have presented a reconstruction approach for networked systems in the time

domain using observed inputs into and outputs from the system along with a priori structural

knowledge about the system. The approach builds on an existing passive network recon-

struction algorithm from [10] by utilizing an evolutionary algorithm to fit the convolutional

models, which has led to considerable performance improvements.

This algorithm will converge to the true network so long as enough structural informa-

tion is known and the input-output data is sufficiently exciting. We have also demonstrated

this algorithm on a numeric example, showing that it does indeed converge to the true

network given enough data.

65

www.manaraa.com

Chapter 7

Robust Passive Network Reconstruction

In this chapter, we modify the VPNR Algorithm presented in Chapter 6 to be more

robust to additive noise on the input-output data. This chapter is adapted from [46], which

was submitted to the 2017 IEEE Conference on Decision and Control as a result of this thesis.

In addition to the results presented in [46], this chapter includes a connection to vulnerability

analysis as presented in Chapter 5.

7.1 Problem Formulation

The robust problem formulation is very similar to that in Section 6.2, differing only in how

the data matrices Du and Dy are defined. Formally, suppose that Du and Dy are measured

with additive error, meaning that if D̂u and D̂y are the actual inputs and outputs into the

system, then Du = D̂u + Eu and Dy = D̂y + Ey for Eu and Ey of appropriate dimensions. We

66

www.manaraa.com

will assume that entries in Eu and Ey are taken from a Gaussian distribution with mean 0

and standard deviation small enough that the noise does not become more significant than

the values in D̂u and D̂y. Given this noisy data, the problem is to reconstruct the DSF

(Q(z), P (z)) as described in Section 6.2.

7.2 The Robust Passive Network Reconstruction Algorithm

Now, we consider the case where there is additive noise on the inputs and/or outputs of

the system, and we present a new algorithm, which we call the Robust Passive Network

Reconstruction (RPNR) Algorithm. All steps are identical to the VPNR presented in Section

6.3, differing only in Step 6. We define that difference here.

Previously, we used ordinary least squares to select x̂∗ = arg minx̂ ‖ŷ−M̂x̂‖2. However,

now that noise has been added, the least squares will try to optimize this by making all links

in Q(z) and P (z) non-zero to fit the noise. This is not desirable as we are trying to find both

the structure and the dynamics of the DSF. As such, we wish to modify the least squares

formulation in order to find the least complicated structure that still fits the data well.

To do this, we choose to solve the following problem

x̂∗ = arg min
x̂
‖y − M̂x̂‖2 + α‖x̂‖0. (7.1)

The addition of the ‖x̂‖0 term penalizes dense solutions, or in other words the solution seeks

to make as many values of Q(t) and P (t) zero as possible. Unfortunately, since the zero-norm

is not actually a norm, this problem is hard to solve. As such, we use the standard lasso

relaxation of the problem, given as follows:

x̂∗ = arg min
x̂
‖y − M̂x̂‖2 + α‖x̂‖1. (7.2)

We then utilize the Akaike Information Criterion (AIC) to select an α. The AIC

measures the trade-off between goodness of fit of arg minx̂ ‖y − M̂x̂‖2 with the complexity of

67

www.manaraa.com

the selected model penalized by α‖x̂‖1, relative to all other choices of α. We select the α

that maximizes the AIC, and returns the x̂∗ that optimizes the resulting problem.

Once (7.2) is solved and an optimal x̂∗ is found, then the algorithm proceeds as

described in Section 6.3, fitting a convolution model to the points in x̂ to reconstruct the

DSF.

Note that, for tractability, this scheme makes no distinction between a single link that

is zero for all t (which is what we desire) and two links that are zero for half of t. Future

work may benefit from enforcing zero links over zero entries.

7.3 Assumptions Necessary for Reconstruction

Unfortunately, due to the added noise on the input-output data, we are not able to reconstruct

the original network exactly, at least not without additional future research. However, we are

still able to get approximations of the network that are very close (see Section 7.4). In order

to generate reasonable approximations, all the assumptions that were listed in Section 6.4

must also hold here, apart from the assumption of non-noisy data, which we relax here.

Specifically, we assume that the noise on the input-output data is small, but not too

small. If the noise is too large, then it will overwhelm the data, and we will not be able to

reconstruct. If it is too small, then the VPNR Algorithm will be able to reconstruct better

than the RPNR Algorithm and should be used instead, though the RPNR Algorithm will

still perform reasonably well. We do not define precisely how much noise is “too big” or “too

small”, though Figures 7.7, 7.12, and 7.17 can be used to give a rough idea of what they

mean.

7.4 Numeric Examples

We now return to the numeric example introduced in Section 6.5, comparing the performance

of the VPNR and the RPNR in situations where there is no noise on the input-output data,

68

www.manaraa.com

and where there is noise on the inputs only, the outputs only, or on both the inputs and

outputs.

7.4.1 Robust Network Reconstruction on Non-Noisy Data

As in Section 6.5, we assume no noise on inputs, states, or outputs; however, we use the

RPNR Algorithm instead of the VPNR Algorithm. The parameters found are as follows:

Q12(t) = −0.374(0.574)t + 0.549(0.421)t + 6.280(−0.004)t + 3.232(−0.003)t − 9.686δ(t,0)

Q13(t) = 0.694(0.733)t − 0.076(−0.644)t − 1.005(0.583)t − 1.799(0.016)t + 2.165δ(t,0)

Q21(t) = 1.348(−0.103)t − 0.078(0.105)t + 0.351(0.108)t + 0.320(0.002)t − 2.096δ(t,0)

Q23(t) = −0.146(−0.014)t − 0.810(0.003)t + 0.298(0.012)t − 0.790(0.004)t + 1.449δ(t,0)

≈ 0

Q31(t) = −1.443(0.009)t − 2.183(−0.001)t − 0.001(0.019)t − 2.654(0.007)t + 0.973δ(t,0)

≈ 0

Q32(t) = 9.123(0.944)t − 10.000(0.860)t − 0.491(0.005)t − 0.531(0.006)t + 1.899δ(t,0) (7.3)

Notice that the coefficients in (7.3) are not as close to the actual coefficients in (6.24).

However, as can be seen in Figure 7.1, the dynamics of the link impulse responses are still

close to the actual system. The notable differences are the introduction of small, but non-zero

dynamics into Q12(t) and the errors in the dynamics for Q21(t). Nonetheless, the other links

that should be zero are still zero, and the links that are not zero still capture many of the

key features of the dynamics. The magnitude and vulnerabilities of the links are also very

close to the actual system as well (see Table 7.1 and Figure 7.2).

69

www.manaraa.com

Figure 7.1 The impulse responses reconstructed using the RPNR Algorithm on non-noisy
data. The green dashed line is the actual convolution model given by Equation (6.24) (for
Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit
is at 0 for all t). The red dots are the values of the impulse response Qij(t) contained in x̂
and found using least squares. The blue line is the reconstructed convolution model from
Equation (6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the
red dots.

70

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 0.092 0.001 0.406 0.003

(1, 3) 0.551 0.007 10.755 0.071

(2, 1) 0.108 0.001 75.289 0.497

(2, 3) 0.005 0.000 151.615 1.000

(3, 1) 0.012 0.000 2.838 0.019

(3, 2) 88.441 1.000 0.184 0.001

Table 7.1 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) of non-noisy data reconstructed using the RPNR Algorithm.

Magnitude Vulnerability

Original

Robust

Figure 7.2 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 7.1. The darkness of each link is proportional to the
normalized magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize
smaller links.

71

www.manaraa.com

7.4.2 Vanilla and Robust Network Reconstruction on Noisy Inputs

Now we consider the case where there is noise on the inputs into the system. Let N (0, 1) be

the normal distribution of mean 0 and standard deviation 1, and let each call to this function

generate a random variable independent from all other calls. Then we simulate the system

introduced in Section 6.5 as before. This time, however, we perturb Du before it is used to

generate M̂ so that, with D̃u being the original input, the input seen by the reconstruction

algorithm is

[Du]ij = [D̃u]ij + γN (0, 1), (7.4)

where γ > 0 parametrizes the magnitude of the noise. Recall that [D̃]ij is generated randomly

from a uniform distribution in the range [−1, 1]. Therefore, any γ roughly greater than 1 will

create noise of magnitude larger than the inputs themselves.

We first evaluate the VPNR Algorithm (not the RPNR Algorithm) when γ = 0.2.

Notice from Figures 7.3 and 7.4 and Table 7.2 that the Vanilla Passive Reconstruction Algo-

rithm reconstructs the non-zero links in the network well. It also computes the vulnerability

of the network quite well. However, it also reconstructs significant dynamics on links that

should be zero, especially on link (1, 2).

72

www.manaraa.com

Figure 7.3 The impulse responses reconstructed using the VPNR Algorithm on noisy inputs.
The green dashed line is the actual convolution model given by Equation (6.24) (for Q12(t),
Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit is at 0 for
all t). The red dots are the values of the impulse response Qij(t) contained in x̂ and found
using least squares. The blue line is the reconstructed convolution model from Equation
(6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the red dots.

73

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 40.929 0.462 0.973 0.003

(1, 3) 0.628 0.007 24.060 0.078

(2, 1) 0.204 0.002 149.882 0.485

(2, 3) 0.025 0.000 308.852 1.000

(3, 1) 0.233 0.003 6.498 0.021

(3, 2) 88.659 1.000 0.581 0.002

Table 7.2 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) of noisy inputs reconstructed using the VPNR Algorithm.

Magnitude Vulnerability

Original

Vanilla

Figure 7.4 The magnitude (top left) and vulnerability (top right) of links in the original Q(z)
as given in Table 6.1 compared with the size (bottom left) and vulnerability (bottom right)
of links as given in Table 7.2. The darkness of each link is proportional to the normalized
magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize smaller links.

74

www.manaraa.com

Now we evaluate the RPNR Algorithm on noisy inputs when γ = 0.2. Notice from

Figures 7.5 and 7.6 as well as Table 7.3 that the RPNR Algorithm performed decently as

compared to the VPNR Algorithm. It did not capture the particulars of the dynamics (shown

in 7.5) on links (1, 3), and (2, 1) quite as well. And while the vulnerabilities computed were

comparable in nearness to the actual vulnerabilities as compared to the VPNR Algorithm,

they weren’t quite as good. Furthermore, like the VPNR Algorithm, it introduced non-zero

dynamics on links that should have been zero, especially on link (1, 2). However, notice the

links that should have been zero were much smaller than in the VPNR Algorithm (notice

that links (2, 3) and (3, 1) were nearly zero), which was the aim of the RPNR Algorithm.

75

www.manaraa.com

Figure 7.5 The impulse responses reconstructed using the RPNR Algorithm on noisy inputs.
The green dashed line is the actual convolution model given by Equation (6.24) (for Q12(t),
Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit is at 0 for
all t). The red dots are the values of the impulse response Qij(t) contained in x̂ and found
using least squares. The blue line is the reconstructed convolution model from Equation
(6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the red dots.

76

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 3.431 0.044 0.699 0.006

(1, 3) 0.419 0.005 10.778 0.097

(2, 1) 0.103 0.001 58.655 0.526

(2, 3) 0.033 0.000 111.571 1.000

(3, 1) 0.008 0.000 3.497 0.031

(3, 2) 78.235 1.000 0.470 0.004

Table 7.3 The size (‖Qij(z)‖∞) and the vulnerability (‖(I − Q(z))−1ji ‖∞) of links (i, j) in
the Q(z) of noisy inputs reconstructed using the Robust Passive Reconstruction Algorithm.

Size Vulnerability

Original

Robust

Figure 7.6 The size (top left) and vulnerability (top right) of links in the original Q(z) as
given in Table 6.1 compared with the size (bottom left) and vulnerability (bottom right)
of links as given in Table 7.3. The darkness of each link is proportional to the normalized
magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize smaller links.

77

www.manaraa.com

Finally, we compare the performance of both the VPNR Algorithm and the RPNR

Algorithm across different magnitudes of noise γ. To do so, we introduce an error as a metric

to represent the goodness of a single network reconstruction run. Let ξij(t) be the actual

impulse response of link (i, j) at times t = 0, . . . , r as represented by the green dashed line in

Figures 7.4 and 7.6. Let ξ̂ij(t, b) be the reconstructed impulse response of link (i, j) at times

t = 0, . . . , r in batch run1 b = 1, . . . , 20 as represented by the red dots in the same figures.

Then define the batch link error ηij(b), the batch network error η(b), and the network error η

as

ηij(b) =
1

r + 1

(
r∑

t=0

(
ξij(t)− ξ̂ij(t, b)

)2) 1
2

,

η(b) =
1

p2 − p
∑

i=1,...,p
j=1,...,p

i 6=j

ηij,

η =
1

20

20∑
b=1

η(b) (7.5)

In other words, ηij(b) is the root mean square error (RMSE) of the reconstructed impulse

response with the actual impulse response on link (i, j) for batch run b, η(b) is the average of

these RMSE’s across all links in Q(t) in batch run b, and η is the average of these average

RMSE’s across all batch runs.

Figure 7.7 compares the average RMSE η of the VPNR Algorithm with the RPNR

Algorithm. Notice how the VPNR Algorithm performs better (lower error) than the RPNR

Algorithm at lower levels of noise. This is sensible since the RPNR Algorithm moves away

from an optimal fit to penalize model complexity; as such, if there is no need to penalize

model complexity, it will tend to perform worse. However, at γ > 0.1, the RPNR Algorithm

begins to perform significantly better than the VPNR Algorithm, a good indication that it is

properly handling the noise in the inputs.

1 Each of the batch runs in these experiments reconstruct a network using the same inputs and outputs
across all experiments, but with noise generated with different seeds.

78

www.manaraa.com

Figure 7.7 Effect of input noise on the ability of the VPNR and RPNR Algorithms to
reconstruct from data.

7.4.3 Vanilla and Robust Network Reconstruction on Noisy Outputs

We now repeat the experiments from the previous section, this time exploring the effects of

noise on outputs instead of on inputs. We simulate the system introduced in Section 6.5

as before, though with unperturbed inputs. Instead, we perturb Dy before it is measured

so that, with D̃y being the actual output produced by input Du, the output seen by the

reconstruction algorithm is

[Dy]ij = [D̃y]ij + γN (0, 1), (7.6)

where γ > 0 once again parametrizes the magnitude of the noise.

We first evaluate the VPNR Algorithm (not the RPNR Algorithm) when γ = 0.1.

From Figures 7.8 and 7.9, along with Table 7.4, we see that, though the reconstructed network

is able to capture many of the main characteristics of the original network, it still introduces

fairly significant errors, especially in links (3, 1) and (3, 2).

79

www.manaraa.com

Figure 7.8 The impulse responses reconstructed using the VPNR Algorithm on noisy outputs.
The green dashed line is the actual convolution model given by Equation (6.24) (for Q12(t),
Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit is at 0 for
all t). The red dots are the values of the impulse response Qij(t) contained in x̂ and found
using least squares. The blue line is the reconstructed convolution model from Equation
(6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the red dots.

80

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 0.145 0.027 2.525 0.020

(1, 3) 0.544 0.102 58.617 0.470

(2, 1) 0.209 0.039 60.353 0.484

(2, 3) 0.041 0.008 124.659 1.000

(3, 1) 3.862 0.725 13.400 0.107

(3, 2) 5.325 1.000 1.134 0.009

Table 7.4 The size (‖Qij(z)‖∞) and the vulnerability (‖(I − Q(z))−1ji ‖∞) of links (i, j) in
the Q(z) of noisy outputs reconstructed using the VPNR Algorithm.

Magnitude Vulnerability

Original

Vanilla

Figure 7.9 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 7.4. The darkness of each link is proportional to the
normalized magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize
smaller links.

81

www.manaraa.com

We now valuate the RPNR Algorithm when γ = 0.1. From Figures 7.10 and 7.11,

along with Table 7.5, we see that, though the reconstructed network–like that found by the

VPNR Algorithm–is able to capture many of the main characteristics of the original network,

it still introduces fairly significant errors, especially in links (3, 1) and (3, 2). However, these

errors are somewhat muted from those found in the VPNR Algorithm.

82

www.manaraa.com

Figure 7.10 The impulse responses reconstructed using the RPNR Algorithm on noisy
outputs. The green dashed line is the actual convolution model given by Equation (6.24) (for
Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit
is at 0 for all t). The red dots are the values of the impulse response Qij(t) contained in x̂
and found using least squares. The blue line is the reconstructed convolution model from
Equation (6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the
red dots.

83

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 0.262 0.008 0.194 0.003

(1, 3) 0.556 0.017 5.680 0.087

(2, 1) 0.054 0.002 33.603 0.512

(2, 3) 0.004 0.000 65.621 1.000

(3, 1) 1.422 0.042 1.876 0.029

(3, 2) 33.550 1.000 0.092 0.001

Table 7.5 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) of noisy outputs reconstructed using the RPNR Algorithm.

Magnitude Vulnerability

Original

Robust

Figure 7.11 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 7.5. The darkness of each link is proportional to the
normalized magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize
smaller links.

84

www.manaraa.com

Finally, we compute the average RMSE of the impulse responses η in order to compare

the performances of the VPNR Algorithm with the RPNR Algorithm as the magnitude of the

output noise γ increases. Figure 7.12 shows the results of this analysis. Again, we see that

the VPNR Algorithm performs better with low levels of noise where the RPNR Algorithm

performs better with high levels of noise. However, the differences in the performances of

these two algorithms are much smaller than they were before.

Figure 7.12 Effect of output noise on the ability of the VPNR and RPNR Algorithms to
reconstruct from data.

7.4.4 Vanilla and Robust Network Reconstruction on Noisy Inputs and Outputs

Once again, we repeat the experiments of the previous sections, this time with noise affecting

both the inputs into and outputs from the system. We use the same noise magnitude γ to

perturb both the inputs and the outputs.

We first evaluate the VPNR Algorithm (not the RPNR Algorithm) when γ = 0.05.

The results of this experiment are given in Figures 7.13 and 7.14 and in Table 7.6. Again,

the algorithm performs well, though with some error.

85

www.manaraa.com

Figure 7.13 The impulse responses reconstructed using the VPNR Algorithm on noisy inputs
and outputs. The green dashed line is the actual convolution model given by Equation (6.24)
(for Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact
fit is at 0 for all t). The red dots are the values of the impulse response Qij(t) contained in x̂
and found using least squares. The blue line is the reconstructed convolution model from
Equation (6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the
red dots.

86

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 0.561 0.008 0.157 0.005

(1, 3) 0.602 0.009 1.382 0.044

(2, 1) 0.144 0.002 18.791 0.595

(2, 3) 0.091 0.001 31.606 1.000

(3, 1) 0.203 0.003 0.300 0.009

(3, 2) 69.235 1.000 0.097 0.003

Table 7.6 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) of noisy inputs and outputs reconstructed using the VPNR Algorithm.

Magnitude Vulnerability

Original

Vanilla

Figure 7.14 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 7.6.

87

www.manaraa.com

We now valuate the RPNR Algorithm when γ = 0.05. The results of this experiment

are given in Figures 7.15 and 7.16 and in Table 7.7. Once again, the algorithm performs well,

though with some error. In this case, it can be said that these errors in the RPNR Algorithm

are larger than those in the VPNR Algorithm.

88

www.manaraa.com

Figure 7.15 The impulse responses reconstructed using the RPNR Algorithm on noisy inputs
and outputs. The green dashed line is the actual convolution model given by Equation (6.24)
(for Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact
fit is at 0 for all t). The red dots are the values of the impulse response Qij(t) contained in x̂
and found using least squares. The blue line is the reconstructed convolution model from
Equation (6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the
red dots.

89

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 0.134 0.005 0.263 0.007

(1, 3) 0.519 0.019 3.286 0.086

(2, 1) 0.087 0.003 17.152 0.448

(2, 3) 0.033 0.001 38.285 1.000

(3, 1) 0.051 0.002 1.386 0.036

(3, 2) 27.094 1.000 0.180 0.005

Table 7.7 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) of noisy inputs and outputs reconstructed using the RPNR Algorithm.

Magnitude Vulnerability

Original

Robust

Figure 7.16 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 7.7.

90

www.manaraa.com

Finally, we compute the average RMSE of the impulse responses η in order to compare

the performances of the VPNR Algorithm with the RPNR Algorithm as the magnitude of

the input and output noise γ increases. Figure 7.17 shows the results of this analysis. Again,

we see that the VPNR Algorithm performs better with low levels of noise where the RPNR

Algorithm performs better with high levels of noise, though again, the differences are fairly

small.

Figure 7.17 Effect of input and output noise on the ability of the VPNR and RPNR
Algorithms to reconstruct from data.

7.5 On the Convergence of the Robust Passive Network Reconstruction Algo-

rithm

As was done in Section 6.6 for the VPNR Algorithm, we can explore the convergence of the

RPNR Algorithm as we change the values of r and T . Using the same measure of error and

the same experiment designed introduced in Section 6.6, the quality of reconstruction using

the RPNR Algorithm on non-noisy data is shown on the left of Figure 7.18. Similarly, the

91

www.manaraa.com

quality of reconstruction using the RPNR Algorithm on noisy inputs and noisy outputs with

γ = 0.1 is shown on the right of 7.18.

As before, as r and T increase, the error ê converges to something near 0, meaning

that though the network isn’t reconstructed exactly, the reconstructed network is close and

additional data doesn’t change the network to which the RPNR Algorithm converges.

Figure 7.18 The quality of reconstruction of the RPNR Algorithm with non-noisy data
(left) and with noisy inputs and outputs at γ = 0.1 (right) on the example in Section 7.4 at
various levels of r and T .

7.6 Conclusions

In conclusion, we have presented an extension to the Vanilla Passive Network Reconstruction

Algorithm, which we demonstrate to be more robust to additive noise on the input-output

data used by the reconstruction process. This extension was made by replacing the ordinary

least squares fitting in Step 6 of the VPNR Algorithm with a Lasso Regression solution.

92

www.manaraa.com

Chapter 8

Blind Passive Network Reconstruction

In this chapter, we modify the VPNR Algorithm presented in Chapter 6 and the

RPNR Algorithm presented in Chapter 7 to reconstruct a network when the inputs into the

system are unknown. The algorithms presented in this chapter have been utilized in [11].

8.1 Problem Formulation

The blind formulation is similar to that presented in Section 6.2 (without noise) and in

Section 7.1 (with noise). The key difference is that the inputs Du are unknown and only Dy

is measured.

93

www.manaraa.com

8.2 The Blind Passive Network Reconstruction Algorithms

We will modify both the VPNR Algorithm and the RPNR algorithm to manage the case where

inputs are not measured. The resultant algorithms we call the Blind Vanilla Passive Network

Reconstruction (B-VPNR) Algorithm and the Blind Robust Passive Network Reconstruction

(B-RPNR) Algorithm. The difference between the B-VPNR and the B-RPNR Algorithms is

the same as the difference between the VPNR and the RPNR algorithms, namely the use of

a different regression technique in Step 6 of the algorithm.

By not measuring the inputs, we must introduce variations to various steps of the

VPNR and RPNR Algorithms. Steps 1 (we only prepare the output data) and 3 (ŷ and L̂

are constructed differently, as will be described below). Furthermore, we only extract and

reconstruct Q (as opposed to both Q and P) in Steps 8, 7, and 9. Finally, the level of a priori

information required to reconstruct using the blind algorithms is not presently known. As

such, step 5 will require variations, but may potentially be skipped so long as the unmeasured

inputs meets certain conditions.

As the largest change from the VPNR Algorithm to the B-VPNR Algorithm is in

Step 3, we focus on that change here. For now, let’s assume that we can measure the outputs

with no error. In particular, let the network dynamics be given by

Y (z) = Q(z)Y (z) + P (z)∆(z), (8.1)

where ∆(z) represents the unmeasured inputs. We will make some assumptions on the

structure of P (z), but we defer that discussion until later. We start by following the same

procedure as the VPNR and RPNR Algorithms up to step .

Now partition x̂ and M̂ such that

ŷ =

[
M̂Q M̂P

]x̂Q
x̂P

 , (8.2)

94

www.manaraa.com

where x̂Q contains only entries in Q(t), x̂P contains only entries in P , and M̂ is partitioned

commensurately. Note that with this partition, M̂Q only contains values the known values

from y and M̂P only contains the unknown values from ∆(z). Note, also, that we only care

about reconstructing the entries in x̂Q and can leave the entries of x̂P as unknown. As such,

(8.2) can be rewritten as

ŷ = M̂Q~xQ + M̂P~xp

= M̂Q~xQ + ζ, (8.3)

where ζ ∈ R(T−1)p is unknown but constant, and M̂Q takes the following form:

M̂Q =

y(1)T 0 0 · · · 0 0 0

0
. . . 0 · · · 0

. . . 0

0 0 y(1)T · · · 0 0 0

...
...

y(r)T 0 0 · · · y(1)T 0 0

0
. . . 0 · · · 0

. . . 0

0 0 y(r)T · · · 0 0 y(1)T

...
...

y(T − 1)T 0 0 · · · y(T − r)T 0 0

0
. . . 0 · · · 0

. . . 0

0 0 y(T − 1)T · · · 0 0 y(T − r)T

. (8.4)

Redefine M̂Q and define x̂Q as the matrix and vector corresponding to the original

M̂Q and ~xQ where all of the diagonal (known to be zero) entries of Q(z) are removed. We

wish now to choose the x̂Q that best fits this data, or in other words, we wish to choose x̂Q

such that the error

e = ŷ −
(
M̂Qx̂Q + ζ

)
(8.5)

95

www.manaraa.com

is minimized in the two-norm sense. Note that, since ζ is constant, minimizing e is the same

as minimizing ê = e+ ζ. As such, (8.5) reduces to minimizing the error1

ê = e+ ζ = ŷ − M̂Qx̂Q. (8.6)

The solution is given by

x̂∗Q = arg min
x̂Q

‖ê‖2 = arg min
x̂Q

‖ŷ − M̂Qx̂Q‖2, (8.7)

which can be solved using ordinary least squares.

Once x̂∗Q is chosen, the B-VPNR Algorithm proceeds exactly like the VPNR and the

RPNR Algorithms starting at step 8. Note also that we can create a robust version of this

algorithm– which we call the Blind Robust Network Reconstruction (B-RPNR) Algorithm–by

replacing Equation (8.7) with

x̂∗Q = arg min
x̂Q

‖ŷ − L̂Qx̂Q‖2 + α‖x̂Q‖1, (8.8)

where α is chosen to maximize the Akaike Information Criterion.

8.3 Assumptions Necessary for Reconstruction

Unfortunately, since we are not measuring the inputs, we are not able to reconstruct the

network exactly, though we can still find approximations (see Section 8.4). The assumptions

required to reconstruct are similar to those discussed in Sections 6.4 and 7.3, but with some

minor variations. They are as follows:

1 Note that (8.7) can also be interpreted as minimizing the unmeasured input dynamics ζ. This is sensible
since we want to explain the dynamics of y as much as possible using the dynamics of Q(t), or in other words,
minimizing the necessity of P (t) as much as possible.

96

www.manaraa.com

• Linearity: The underlying network generating the output data must have linear

dynamics. This is due to the fact that we are reconstructing DSFs, which presently

only represent linear dynamics.

• Stability: The underlying network generating the output data must be stable. This

allows the Toeplitz representation of the network in (6.10)–and hence L̂ in (8.4)–to be

finite dimensional.

• Strict Causality: The underlying network generating the output data must be strictly

causal, meaning changes in the present only make an impact on the network strictly in

the future. This also implies that the impulse responses at time t = 0 are Qij(0) = 0.

• Informativity Conditions: The informativity conditions are presently unknown,

though they may have something to do with independence on the noise ζ.

• Small Levels of Noise: The outputs must be measured with no more than small

levels of output noise. As shown in the next section, reconstruction is sensitive to noise,

and so ideally, there would be no noise.

• Richness of Data: We require that the input-output data be “rich enough” to

reconstruct. This condition can be checked directly. The data is “rich enough” if M̂ is

injective and if ŷ is in the range of M̂ .

• Large Enough r: We require that r be chosen large enough to capture the full

dynamics of the system.

• Large Enough T : We require that enough data be collected that we don’t overfit the

least squares model. Furthermore, T should be strictly larger than r.

8.4 Numeric Examples

Once again, we return to the numeric example introduced in Section 6.5, comparing the

performance of the B-VPNR and the B-RPNR in situations where there is no noise on the

output data and where there is noise.

97

www.manaraa.com

8.4.1 Blind Reconstruction with No Noise

We first demonstrate the B-VPNR Algorithm on our running example with no noise on the

outputs. The results of this experiment are contained in Figures 8.1 and 8.2, as well as

Table 8.1. Even with no noise on the system, the Vanilla-Blind algorithm was incapable

of reconstructing the network exactly. However, the network it did reconstruct was a good

approximation of the actual network.

98

www.manaraa.com

Figure 8.1 The impulse responses reconstructed using the B-VPNR Algorithm on non-noisy
data. The green dashed line is the actual convolution model given by Equation (6.24) (for
Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit
is at 0 for all t). The red dots are the values of the impulse response Qij(t) contained in x̂
and found using least squares. The blue line is the reconstructed convolution model from
Equation (6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the
red dots.

99

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 5.644 0.061 0.060 0.001

(1, 3) 0.173 0.002 2.683 0.034

(2, 1) 0.058 0.001 8.594 0.107

(2, 3) 0.013 0.000 80.072 1.000

(3, 1) 0.059 0.001 0.174 0.002

(3, 2) 92.502 1.000 0.016 0.000

Table 8.1 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) without measuring the inputs reconstructed using the B-VPNR Algorithm.

Magnitude Vulnerability

Original

Vanilla-Blind

Figure 8.2 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 8.1. The darkness of each link is proportional to the
normalized magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize
smaller links.

100

www.manaraa.com

We now demonstrate the B-RPNR Algorithm on our running example with no noise

on the outputs. The results of this experiment are contained in Figures 8.3 and 8.4, as well as

Table 8.2. Again, this algorithm was incapable of reconstructing the network exactly, though

it still performed reasonably well.

101

www.manaraa.com

Figure 8.3 The impulse responses reconstructed using the B-RPNR Algorithm on non-noisy
data. The green dashed line is the actual convolution model given by Equation (6.24) (for
Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit
is at 0 for all t). The red dots are the values of the impulse response Qij(t) contained in x̂
and found using least squares. The blue line is the reconstructed convolution model from
Equation (6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the
red dots.

102

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 4.723 0.054 0.099 0.002

(1, 3) 0.270 0.003 2.672 0.052

(2, 1) 0.051 0.001 18.334 0.354

(2, 3) 0.001 0.000 51.850 1.000

(3, 1) 0.137 0.002 0.507 0.010

(3, 2) 87.332 1.000 0.025 0.000

Table 8.2 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) without measuring the inputs reconstructed using the B-RPNR Algorithm.

Magnitude Vulnerability

Original

Robust-Blind

Figure 8.4 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 8.2. The darkness of each link is proportional to the
normalized magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize
smaller links.

103

www.manaraa.com

8.4.2 Blind Reconstruction with Noisy Outputs

We now demonstrate blind reconstruction using the B-VPNR Algorithm with noise on the

outputs at γ = 0.01. The results of this experiment are contained in Figures 8.5 and 8.6, as

well as Table 8.3. Notice that, even with a small magnitude of noise, the algorithm performed

significantly worse than before, adding significant dynamics on non-zero links and missing

the dynamics on link (1, 3). Nonetheless, it was still able to approximate some of the features

of the network.

104

www.manaraa.com

Figure 8.5 The impulse responses reconstructed using the B-VPNR Algorithm on noisy
outputs. The green dashed line is the actual convolution model given by Equation (6.24) (for
Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit
is at 0 for all t). The red dots are the values of the impulse response Qij(t) contained in x̂
and found using least squares. The blue line is the reconstructed convolution model from
Equation (6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the
red dots.

105

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 0.231 0.139 0.140 0.047

(1, 3) 0.130 0.259 2.994 1.000

(2, 1) 0.103 0.062 0.357 0.199

(2, 3) 0.141 0.085 0.850 0.284

(3, 1) 1.659 1.000 0.906 0.303

(3, 2) 0.428 0.258 0.145 0.049

Table 8.3 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) without measuring the inputs and with noise on the outputs reconstructed using
the B-VPNR Algorithm.

106

www.manaraa.com

Magnitude Vulnerability

Original

Vanilla-Blind

Figure 8.6 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 8.3. The darkness of each link is proportional to the
normalized magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize
smaller links.

We now demonstrate blind reconstruction using the B-RPNR Algorithm with noise

on the outputs at γ = 0.01. The results of this experiment are contained in Figures 8.7 and

8.8, as well as Table 8.4. This algorithm performed somewhat better than the Vanilla-Blind

Algorithm with noise, driving many of the dynamics that should have been zero down to zero.

However, it still fails to capture link (3, 2) and misses some of the higher-order dynamics on

(1, 3) and (2, 1). Nonetheless, the approximation of the network is still fairly reasonable.

107

www.manaraa.com

Figure 8.7 The impulse responses reconstructed using the B-RPNR Algorithm on noisy
outputs. The green dashed line is the actual convolution model given by Equation (6.24) (for
Q12(t), Q23(t), and Q31(t), this line is not drawn as the convolution model as the exact fit
is at 0 for all t). The red dots are the values of the impulse response Qij(t) contained in x̂
and found using least squares. The blue line is the reconstructed convolution model from
Equation (6.25) using the evolutionary algorithm to fit an equation of the form (6.20) to the
red dots.

108

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

(1, 2) 0.148 0.100 0.073 0.051

(1, 3) 0.227 0.153 0.234 0.162

(2, 1) 0.067 0.045 0.373 0.258

(2, 3) 0.024 0.016 1.446 1.000

(3, 1) 0.192 0.129 0.222 0.153

(3, 2) 1.483 1.000 0.036 0.025

Table 8.4 The magnitude (‖Qij(z)‖∞) and the vulnerability (‖(I−Q(z))−1ji ‖∞) of links (i, j)
in the Q(z) without measuring the inputs and with noise on the outputs reconstructed using
the B-RPNR Algorithm.

109

www.manaraa.com

Magnitude Vulnerability

Original

Robust-Blind

Figure 8.8 The magnitude (top left) and vulnerability (top right) of links in the original
Q(z) as given in Table 6.1 compared with the magnitude (bottom left) and vulnerability
(bottom right) of links as given in Table 8.4. The darkness of each link is proportional to the
normalized magnitudes and vulnerabilities, raised to the 0.4’th power in order to emphasize
smaller links.

Finally, we compare the error η of the Vanilla-Blind and the Robust-Blind Network

Reconstruction Algorithms as noise increases. The results of this experiment are shown in

Figure 8.9. Notice how, even at it’s best, the Robust-Blind Algorithm performs about as

well as the Robust Algorithm on large magnitudes of noise on measured inputs as shown in

Figure 7.7, indicating that both Blind Reconstruction Algorithms are extremely sensitive to

noise on the output signals. Also notice that the Robust-Blind Algorithm outperforms the

Vanilla-Blind Algorithm except for a window of noise at 0.1 ≤ γ ≤ 1.

110

www.manaraa.com

Figure 8.9 Effect of output noise on the ability of the B-VPNR and the B-RPNR Algorithms
to reconstruct from data without measuring the inputs.

8.5 On the Convergence of the Blind Passive Reconstruction Algorithms

As was done in Section 6.6 for the VPNR Algorithm and Section 7.5 for the RPNR Algorithm,

we can explore the convergence of the blind algorithms as we change the values of r and T .

Using the same measure of error and the same experiment designed introduced in Section

6.6, the quality of reconstruction using the blind algorithms on non-noisy and noisy data is

shown in Figure 8.10.

As before, as r and T increase, the error ê converges to some value close to 0, meaning

that though the network isn’t reconstructed exactly, it gets close and increased data doesn’t

change the network to which the algorithms converge.

8.6 Conclusions

In conclusion, we have presented an algorithm for the reconstruction of dynamical structure

functions where inputs are not measured. Since inputs are not measured, we are not able to

111

www.manaraa.com

Figure 8.10 The quality of reconstruction of the B-VPNR Algorithm with non-noisy data
(top left) and with noisy outputs at γ = 0.05 (top right) as well as the B-RPNR Algorithm
on non-noisy data (bottom left) and with noisy outputs at γ = 0.05 (bottom right) on the
example in Section 8.4 at various levels of r and T . Note that the error scale for each subfigure
is different.

recover the exact network; however, we are still able to recover a reasonable approximation

of the network.

112

www.manaraa.com

Chapter 9

Open Questions in Passive Network Reconstruction

Research into network reconstruction is still a work in progress. This thesis is primarily

intended as a proof of concept, demonstrating and expanding the basic theory of passive

network reconstruction and applying it to actual financial data. There is still work to do

until passive network reconstruction can be considered a solved problem. Areas of future

research include the following:

• Proof of Informativity Conditions on Vanilla and Robust: For both the VPNR

and the RPNR Algorithms, it was stated that the a priori information known about

the network system must meet certain informativity conditions–specifically conditions

that are informationally equivalent to target specificity–in order to reconstruct.

The reason it is assumed that these informativity conditions are necessary and

sufficient is that they have been proven to be the necessary and sufficient for the active

113

www.manaraa.com

reconstruction of frequency-domain networks [16]. If they do not hold for the passive

reconstruction of time-domain networks, then a frequency domain network can violate

these conditions and still reconstruct by converting to the time domain and then back

to the frequency domain. Furthermore, preliminary experiments (not shown here) show

that if these conditions are even slightly violated, then the reconstructed network can

be arbitrarily bad. For these reasons, we assume that the necessary and sufficient

informativity conditions for passive reconstruction on time-domain are the same as for

active reconstruction on frequency-domain networks.

Nonetheless, it would be valuable to develop a proof of these necessary and

sufficient conditions directly from the passive formulation. Not only would it solidify

the passive network reconstruction theory, but such a proof would provide more

understanding as to the necessary and sufficient conditions for blind reconstruction

(next bullet).

• Exploration of Informativity Conditions: As mentioned in the previous point, it

is presently unknown how wrong a reconstructed network will be if the informativity

conditions are even slightly violated. Some preliminary experiments suggest that the

networks can be arbitrarily bad, but further investigation is warranted.

• Informativity Conditions on Blind: It is presently unknown what the necessary

and sufficient conditions on the unknown inputs are for blind reconstruction. They are

likely related to the independence of the noise generated by the unknown inputs. A

proof of the necessary and sufficient conditions for the vanilla and robust algorithms

may be useful in finding these conditions.

• Proof of Convergence: Evidence was provided that the algorithms converge to the

proper network as r and T increase. However, there is presently no proof of this.

• Reconstruction Validation: Presently, there is no scheme for validating whether a

reconstructed network is close to the actual network that generated the data, other

114

www.manaraa.com

than knowing what the original network was to begin with. We use a known network

in the previous chapters to demonstrate that the network reconstruction algorithms

are functioning as desired; however, it would be valuable to determine how good the

reconstructed network is even if the actual network is unknown.

One potential method for doing this may be to use the reconstructed network

to predict future outputs given present inputs, and then to split the input-output data

into training and validation sets. Careful thought is necessary in order to perform the

two tasks of splitting the data and generating predictions.

• Alternative Blind Algorithm: Presently, the blind algorithm treats the noise created

by unknown inputs as the same as the error in the least squares model. An alternative

scheme may be to separate the error and the noise by augmenting the M̂ matrix with

the identity (in other words, replacing the side of L̂ corresponding to P (t) instead of

dropping it). Additional research will be needed to determine whether this technique

works and whether it performs better than the proposed technique.

• Alternative Robust Algorithms: This work proposes one robust algorithm by

replacing the use of fitting the impulse responses by an ordinary least squares algorithm

with a lasso regression algorithm. Other robust algorithms may be generated by using

alternative regression techniques instead. Future work may evaluate which of these

alternative schemes performs better under different assumptions on the noise on the

data.

• Link Elimination: This work used the term robust somewhat differently than [1, 6, 49,

50]. Those works propose and utilize robust techniques for active network reconstruction

of frequency-domain networks, which is done by forcing certain links to be zero and then

performing network reconstruction, and then repeating with alternative choices of links

being forced to zero. The final reconstructed network is generated by the choice of links

being forced to zero that results in a network that minimizes the Akaike Information

115

www.manaraa.com

Criterion. Similar techniques in passive reconstruction for all four algorithms may also

be considered.

• Partially Passive Algorithms: Presently, all reconstruction literature assumes that

all inputs is entirely controlled, entirely measured but not controlled, or not measured

at all. Additional research may consider when a subset of the inputs are controlled and

the remaining inputs are measured but not controlled. Questions may be asked about

what, if anything, may be gained in terms of the quality of reconstruction and on the

necessary assumptions on the system and the data by controlling some subset of the

inputs.

• Partially Blind Algorithms: Similar to the previous bullet, research may explore

the ability to reconstruct by measuring a subset of the inputs and assuming that there

are additional unmeasured inputs (such as external noisy disturbances) on the system.

This will allow network reconstruction to be performed on more realistic systems, and

may result in higher-quality results than simply assuming all inputs are unknown.

• Bounds on Correctness: For all algorithms, a precise statement on the bounds of

the correctness of reconstructed networks under noise or when inputs are not measured

would be valuable.

• Quality of Reconstruction of Approximately Linear Networks: Presently, it

is unknown how well network reconstruction performs on data generated by networks

that aren’t linear but can be approximated by linear networks reasonably well.

• Reconstruction of Causal Networks: Presently, network reconstruction requires

that the underlying network be strictly causal. Future techniques may relax this

assumption to reconstruct causal, but not necessarily strictly causal networks.

• Reconstruction of Unstable Networks: Presently, network reconstruction requires

that the underlying network be stable. Future work may explore whether it is even

possible to reconstruct unstable networks, and if so, present techniques to do so.

116

www.manaraa.com

Chapter 10

Vulnerability Analysis of Financial Networks

In this chapter, we turn our attention to the original problem at hand, which is to

analyze the vulnerability of financial networks to destabilizing attacks.

10.1 Network Reconstruction as Applied to Financial Networks

Consider again Figure 10.1, repeated from Chapter 4. The market consists of feedback

interactions between traders and a Matching Engine. Recall that traders take current prices

and external market information to make decisions about which securities to buy or sell,

submitting these decisions as orders to the Matching Engine. The Matching Engine evaluates

all orders and decides on fair trades, computing stock prices and the limit order book as

outputs.

117

www.manaraa.com

Since stock prices are publicly reported, we can treat any subset of those prices as the

output to the system. And though external information is also typically public, it is complex

and hard to measure; as such, we treat external information as an unmeasured input; as

such, any reconstruction we perform on financial data will necessarily utilize one of the Blind

Reconstruction Algorithms (in truth, these algorithms were designed precisely so that we can

perform network reconstruction of financial data).

And since we are measuring only stock prices and not any inputs into the market, we

are required to use either the B-VPNR or the B-RPNR Algorithm to reconstruct financial

networks.

Figure 10.1 Overview of the stock market. Prices within the market engine of one security
are made independent of the orders submitted to other securities. Inter-price dynamic
relationships only exist because of trader behavior. A repeat of Figure 4.2 from Chapter 4.

In this section, we discuss how reconstructed financial networks and their corresponding

vulnerability analyses should be interpreted.

118

www.manaraa.com

10.1.1 Interpretation of A Reconstructed Financial Network

The system being reconstructed from financial data is the system that maps external informa-

tion w to prices y, which is the full market including both trader behavior and the Matching

Engine. However, recall that the prices computed for a single security by Matching Engine

are independent from the orders submitted for any other security. As such, prices of one

security are only dependent on prices of another security through trader behavior. Since

the Q(z) reconstructed provides information on the causal dependence of the price of each

security on the prices of all other securities, Q(z) really is a representation of trader behavior.

10.1.2 Interpretation of the Impulse Responses

Since a link (i, j) in the reconstructed Q(z) define the causal impact of price j on price i, we

can interpret the reconstructed impulse responses Q(t) as how the prices of i will change in

the future given an increase of $1.00 in the price of i now and holding everything else in the

network constant.

119

www.manaraa.com

Figure 10.2 An example impulse response of financial data describing the causal impact of
the prices of Micron (MU) on the prices of Microsoft (MSFT) at a daily timescale resolution.
This and actual reconstructed impulse response copied from the top-left image of Figure 10.3
in Section 10.3.1.

For example, consider link Q12(t) shown in Figure 10.2, which shows the causal impact

of the prices of Micron (MU) stock on the prices of Microsoft (MSFT) stock from day to day.

Suppose that MSFT is presently at $30.00, and suppose that right now, the price of MU

increases from $10.00 to $11.00, only to immediately drop back down to $10.00 tomorrow.

Then Figure 10.2 shows what the price of MSFT will be over the next 200 days (offset

by $30.00) if no other prices in the market changed. In particular, tomorrow, MSFT would

be at approximately $30.50. In two days, MSFT would be at approximately $29.90. In three

days, MSFT would be barely above $30.00. And beyond that, the change in MU prices today

have negligible impact on future prices of MSFT.

One thing to note, as shown in the previous section, the B-VPNR and the B-RPNR

Algorithms are incapable of exactly computing the impulse response of the actual network.

120

www.manaraa.com

The reconstructed impulse responses will only be rough approximations of the actual impulse

responses.

10.1.3 Interpretation of Link Magnitudes

Link magnitudes are a representation of the strength of the causal relationship between

the prices of two securities, relative to the other links in the network. Though impulse

responses reconstructed using the B-VPNR and the B-RPNR algorithms will merely be rough

approximations of the actual impulse responses, the relative reconstructed link magnitudes

will be fairly close to the actual network link magnitudes.

10.1.4 Creating a Destabilizing Attack on Financial Networks

For any link in a reconstructed financial network, a non-zero vulnerability on that link

indicates that a stable additive perturbation can be created to destabilize the full network.

Like link magnitudes, relative vulnerabilities reconstructed using the B-VPNR and the

B-RPNR algorithms tend to be fairly accurate.

An example of a stable additive perturbation on a link A→ C is an algorithmic trader

that observes the prices of C and for every $1 in price that C increases, the trader buys

$10, 000 of A.

Vulnerabilities are inversely proportional to the minimum amount of money required

to be invested on each link in order to destabilize the system. As such, the most vulnerable

link will be the one that is cheapest to attack. And while this analysis can indicate which

link to attack and roughly the amount of money required to successfully attack the link, it

does not say that all attacks of that magnitude can destabilize the system. Furthermore, it

does not indicate how to attack the link to destabilize the system, only that it can be done.

If we could reconstruct the dynamics of a network exactly, it would be fairly straight-

forward to create both a destabilizing attack as well as a minimal (the cheapest) destabilizing

attack. However, as noted previously, the impulse responses (and hence the network dy-

121

www.manaraa.com

namics) reconstructed using the B-VPNR and the B-RPNR Algorithms are merely rough

approximations of the actual network; as such, constructing a destabilizing attack is more

difficult and will be relegated to future research.

10.1.5 Protecting Against a Destabilizing Attack on Financial Networks

As discussed in the previous section, it is presently fairly difficult to construct a destabilizing

attack on financial networks given that the impulse responses–and hence system dynamics–

reconstructed using the B-VPNR and the B-RPNR algorithms are only rough approximations

of the true network. However, future research may demonstrate methods on how to create

destabilizing attacks even on these rough approximations; as such, we may wish to consider

methods to protecting against such attacks.

Legal considerations and regulations aside, the most effective way to protect financial

networks against destabilization attacks would be to add noise to reported prices. As shown

in the previous chapter, the blind algorithms are both sensitive to even small levels of noise;

as such, noise added would make it extremely difficult to construct a destabilizing attack. It

would be difficult even to tell where in the network the cheapest attack could be launched as

even vulnerability was shown to be sensitive to this noise.

That said, adding noise to reported noise would only make it difficult to construct

a destabilizing attack. However, once found (either intentionally or inadvertently), the

same attack will destabilize the system regardless of whether noise has been added. Future

research is needed to determine how to make financial networks both robust and resilient to

destabilizing attacks.

10.2 Reconstructability of Financial Networks

In this section, we evaluate the assumptions discussed in Section 8.3 which are required for

both algorithms to function properly to determine whether financial networks can even be

reconstructed. These assumptions are as follows:

122

www.manaraa.com

• Linearity: Network reconstruction as presented in this work assumes that the dynamics

of the underlying are linear. However, it is almost guaranteed that the actual dynamics

of the market are non-linear. Therefore, in performing a network reconstruction on

price data, we are implicitly assuming that the dynamics are near enough to linear to be

approximated by a linear network. This assumption is strong, and the most debatable

of all assumptions made in this section, but we make it anyway.

• Stability and Strict Causality: In order to perform network reconstruction on

market data, we must assume (for now at least) that links in Q(z) and P (z) are stable,

or in other words, that the impulse responses Q(t) and P (t) converge to zero as t→∞.

We also assume that dynamics are strictly causal on all time scales, meaning that present

information only affects prices in the future. Strict causality implies that Q(0) = 0 and

P (0) = 0.

These assumptions can be interpreted in context of the Efficient Market Hypoth-

esis (EMH). As discussed in [26], the EMH is the idea that stock prices now (t = 0)

are a reflection all available information in the market, including historical prices y(t)

for t < 0 and external market information u(t) for t ≤ 0. In other words, the impulse

responses Q(t) and P (t) are precisely 0 for t > 0, though they need not be 0 for t = 0.

As stability is the assumption that Q(t) and P (t) converge to zero, the EMH

is much a stronger statement forcing Q(t) and P (t) to converge to zero arbitrarily

fast. However, the EMH is also a contradiction of causality in that in allows–and even

requires–that all present information be reflected in prices immediately.

There are criticisms of the EMH, most of which reduce to the idea that prices

have memory and momentum (meaning that Q(t) and P (t) need not converge to zero

arbitrarily fast, but remain stable). It is also not a stretch to assume that information

needs time to propagate through the network (meaning that Q(t) and P (t) are strictly

causal).

123

www.manaraa.com

For networks to be reconstructed, we require (for now at least) that the networks

be strictly causal. We also require the violation of the EMH, allowing prices to have

at least some memory, while remaining stable. The very fact that we are able to

reconstruct networks (as shown later in this chapter) with features consistent on both

the daily and the decisecond resolution levels is evidence that the EMH isn’t entirely

true. Otherwise, if the EMH holds, we would reconstruct Q(z) to be essentially zero.

• Informativity Conditions: Though it is not yet known what the necessary and

sufficient informativity conditions of the blind reconstruction are, we assume that

they are related to the independence of the noise ζ. This assumption implies that

external market information can drive the present set of prices to any other set of

prices arbitrarily quickly. While this assumption is strong, it is also not unreasonable,

especially given the efficient market hypothesis and the sensitivity of prices to breaking

news. Nonetheless, it is presently difficult–if not impossible–to test the validity of this

assumption.

• Small Levels of Noise on Outputs: In the previous chapter, we showed that both

the B-VPNR and the B-RPNR reconstruction algorithms are highly sensitive to additive

noise on the outputs; as such, we require that such noise be small. Fortunately, stock

prices are reported exactly, meaning we have no noise on the outputs, additive or

otherwise.

Note also that this implies that the B-VPNR Algorithm is the proper algorithm

to use to reconstruct financial networks. However, for completeness, we also reconstruct

financial networks using the B-RPNR Algorithm.

• Richness of Data: In other words, L̂Q is injective with ŷ ∈ R(L̂Q). In all networks

reconstructed in this chapter, this condition was met.

• Large Enough r: The blind algorithms require that r be large enough to capture the

full impulse response dynamics. For all experiments in this chapter, we choose r = 200.

124

www.manaraa.com

Every impulse response had more than sufficient time to converge to an envelope around

zero within this time frame (see Figure 10.2 and all subsequent impulse responses).

• Large Enough T : We also require a large enough T that we don’t overfit the least

squares model. In all examples, we chose T = 6r + 1 = 1201, a rule of thumb which

worked well for the examples in the previous chapter.

In short, financial data meets most of the assumptions required to use the B-VPNR

or the B-RPNR Algorithm. For the few assumptions which are either violated or unknown,

we have some evidence that network reconstruction is possible nonetheless.

10.3 Datasets

To perform network reconstruction on financial data, we use samples from the three data

sources discussed in Chapter 4. We provide details about each of the three samples here.

10.3.1 Dataset 1 (Daily Data)

The first set of data consists of closing prices taken from Yahoo! Finance daily data. The

set consists of 1201 data points ranging in time from January 6, 2012 to October 13, 2016.

These prices are shown in Figure 10.3.

It should be noted that this dataset skips days that are holidays or weekends. However,

network reconstruction assumes that the time between each time point is consistent. As such,

holidays and weekends are essentially ignored with the potentially debatable assumption

that prices change the same way over the larger time change spreading over a holiday or

a weekend as they would over a single day. It is possible that this is the reason why the

impulse responses on this dataset (Section 10.4) only converge to an envelope around zero

and never actually arrive at zero.

This dataset is designed to capture the behavior of slow traders such as day traders.

125

www.manaraa.com

Figure 10.3 The prices in Dataset 1 taken daily from 1/6/12 to 10/13/12.

10.3.2 Dataset 2 (Minute-Resolution Data)

The second set of data consists of the minute-by-minute samples of last prices recorded by

the Tour de Finance. Like Dataset 1, this set consists of 1201 data points ranging from

November 14, 2016 at 9:30 AM EST to November 16, 2016 at 2:57 PM EST. These prices

are shown in Figure 10.4.

There are no holidays in this time period. However, data was only collected between

9:30 AM and 4:00 PM EST. Hence–as with Dataset 1–there are large gaps in the data that

are treated the same as a single time step. Furthermore, the effect of these gaps will be

more pronounced than gaps within Dataset 1 as the number of minutes from market close to

market open are orders of magnitude larger than the number of days in a weekend or holiday.

126

www.manaraa.com

This dataset is designed to capture the behavior of slow algorithmic traders.

Figure 10.4 The prices in Dataset 2 taken every minute from 11/14/16 to 11/16/2016.

10.3.3 Dataset 3 (Decisecond-Resolution Data)

The final set of data is gathered from the ITCH data. Samples are taken every tenth of a

second, and the last trade price is forward-filled to represent the price of each security at

each decisecond. This set, like the prior two datasets, consists of 1201 data points, this time

ranging from 11:00 AM to 11:20 AM EST on June 30, 2014. Unlike the previous two datasets,

there are no temporal gaps in the data. These prices are shown in Figure 10.5.

This dataset is designed to capture the behavior of high frequency traders.

127

www.manaraa.com

Figure 10.5 The prices in Dataset 3 taken every tenth of a second on 6/30/14.

10.4 Reconstructed Networks

We now show the results of two networks reconstructed from the three datasets described

previously.

10.4.1 Network 1

The first network we reconstruct consists of three securities all taken from the technology

industry: Microsoft Corporation (MSFT), Micron Technology, Inc. (MU), and Intel (INTC).

The results are outlined below.

The surprising result is that the network reconstructed using the B-VPNR Algorithm

on daily data (Figure 10.8) is nearly identical to the network reconstructed using decisecond-

128

www.manaraa.com

resolution data (Figure 10.14), even though the impulse responses at each resolution are very

different. This is not only evidence that the network reconstruction is working, but also it is

capturing something fundamental about trader behavior that is independent of time scale

(assuming that the network reconstructed from Dataset 2 is different primarily because of

the large gaps in data that are not present in either Datasets 1 or 3).

In the two networks that were nearly identical, the strongest causal link is the link

from Intel to Micron. This isn’t entirely surprising as the two companies often collaborate,

including through their joint venture IM Flash. What is surprising is that the link from

Micron back to Intel is weak, though perhaps this can be explained by the fact that Micron

is relatively small compared to Intel. The next strongest links are the links from Intel to

MSFT and back. This isn’t surprising since Intel products power many Microsoft products,

leaving the two companies co-dependent.

Notice also that the B-VPNR and the B-RPNR Algorithms reconstruct nearly exactly

the same networks on Datasets 1 and 3 (Figures 10.8 and 10.14), but the two algorithms

perform very differently on Dataset 3 (Figure 10.11).

129

www.manaraa.com

Dataset 1

Figure 10.6 The impulse responses of links in Network 1 (MSFT, MU, and INTC) using
Dataset 1 (daily data) reconstructed using the B-VPNR Algorithm.

130

www.manaraa.com

Figure 10.7 The impulse responses of links in Network 1 (MSFT, MU, and INTC) using
Dataset 1 (daily data) reconstructed using the B-RPNR Algorithm.

131

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

MSFT ← MU 0.614 0.622 56.225 0.246

MSFT ← INTC 0.970 0.981 139.070 0.609

MU ← MSFT 0.519 0.525 77.421 0.339

MU ← INTC 0.988 1.000 68.704 0.301

INTC ← MSFT 0.866 0.876 228.344 1.000

INTC ← MU 0.062 0.063 80.950 0.355

Table 10.1 The magnitude and vulnerability of links in Network 1 (MSFT, MU, and INTC)
using Dataset 1 (daily data) reconstructed using the B-VPNR Algorithm.

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

MSFT ← MU 0.444 0.557 1.047 0.380

MSFT ← INTC 0.797 1.000 1.583 0.575

MU ← MSFT 0.458 0.574 1.126 0.409

MU ← INTC 0.788 0.988 0.794 0.288

INTC ← MSFT 0.674 0.846 2.753 1.000

INTC ← MU 0.050 0.063 1.234 0.448

Table 10.2 The magnitude and vulnerability of links in Network 1 (MSFT, MU, and INTC)
using Dataset 1 (daily data) reconstructed using the B-RPNR Algorithm.

132

www.manaraa.com

Magnitude Vulnerability

B-VPNR

B-RPNR

Figure 10.8 The normalized magnitude (top left) and vulnerability (top right) of links in
Network 1 on Dataset 1 reconstructed using the B-VPNR Algorithm as given in Table 10.1
and the same (bottom left and right) using the B-RPNR Algorithm as given in Table 10.2.

133

www.manaraa.com

Dataset 2

Figure 10.9 The impulse responses of links in Network 1 (MSFT, MU, and INTC) using
Dataset 2 (minute-resolution data) reconstructed using the B-VPNR Algorithm.

134

www.manaraa.com

Figure 10.10 The impulse responses of links in Network 1 (MSFT, MU, and INTC) using
Dataset 2 (minute-resolution data) reconstructed using the B-RPNR Algorithm.

135

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

MSFT ← MU 2.251 1.000 21.909 0.116

MSFT ← INTC 1.253 0.557 43.717 0.230

MU ← MSFT 0.213 0.095 189.684 1.000

MU ← INTC 0.161 0.072 113.878 0.600

INTC ← MSFT 0.526 0.234 68.183 0.359

INTC ← MU 0.387 0.172 20.432 0.108

Table 10.3 The magnitude and vulnerability of links in Network 1 (MSFT, MU, and INTC)
using Dataset 2 (minute-resolution data) reconstructed using the B-VPNR Algorithm.

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

MSFT ← MU 1.689 1.000 0.454 0.096

MSFT ← INTC 0.657 0.389 1.056 0.223

MU ← MSFT 0.185 0.109 4.730 1.000

MU ← INTC 0.000 0.000 2.385 0.504

INTC ← MSFT 0.367 0.217 1.618 0.342

INTC ← MU 0.358 0.212 0.299 0.063

Table 10.4 The magnitude and vulnerability of links in Network 1 (MSFT, MU, and INTC)
using Dataset 2 (minute-resolution data) reconstructed using the B-RPNR Algorithm.

136

www.manaraa.com

Magnitude Vulnerability

B-VPNR

B-RPNR

Figure 10.11 The normalized magnitude (top left) and vulnerability (top right) of links in
Network 1 on Dataset 2 reconstructed using the B-VPNR Algorithm as given in Table 10.3
and the same (bottom left and right) using the B-RPNR Algorithm as given in Table 10.4.

137

www.manaraa.com

Dataset 3

Figure 10.12 The impulse responses of links in Network 1 (MSFT, MU, and INTC) using
Dataset 3 (decisecond-resolution data) reconstructed using the B-VPNR Algorithm.

138

www.manaraa.com

Figure 10.13 The impulse responses of links in Network 1 (MSFT, MU, and INTC) using
Dataset 3 (decisecond-resolution data) reconstructed using the B-RPNR Algorithm.

139

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

MSFT ← MU 0.731 0.929 41.464 0.653

MSFT ← INTC 0.639 0.812 39.136 0.616

MU ← MSFT 0.477 0.606 39.463 0.622

MU ← INTC 0.787 1.000 29.036 0.457

INTC ← MSFT 0.729 0.926 63.486 1.000

INTC ← MU 0.318 0.404 48.714 0.767

Table 10.5 The magnitude and vulnerability of links in Network 1 (MSFT, MU, and INTC)
using Dataset 3 (decisecond-resolution data) reconstructed using the B-VPNR Algorithm.

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

MSFT ← MU 0.000 0.000 0.000 0.000

MSFT ← INTC 0.301 1.000 0.000 0.000

MU ← MSFT 0.000 0.000 0.017 0.055

MU ← INTC 0.000 0.000 0.055 0.182

INTC ← MSFT 0.000 0.000 0.301 1.000

INTC ← MU 0.055 0.182 0.000 0.000

Table 10.6 The magnitude and vulnerability of links in Network 1 (MSFT, MU, and INTC)
using Dataset 3 (decisecond-resolution data) reconstructed using the B-RPNR Algorithm.

140

www.manaraa.com

Magnitude Vulnerability

B-VPNR

B-RPNR

Figure 10.14 The normalized magnitude (top left) and vulnerability (top right) of links in
Network 1 on Dataset 3 reconstructed using the B-VPNR Algorithm as given in Table 10.5
and the same (bottom left and right) using the B-RPNR Algorithm as given in Table 10.6.

10.4.2 Network 2

For Network 2, we consider a somewhat larger set of securities, though still small enough

that we can perform network reconstruction. This network consists of five securities in three

induestries, which are:

• Energy: Exxon Mobil Corporation (XOM) and Chevron Corporation (CVX)

• Finance: Citigroup Inc (C) and JPMorgan Chase & Co (JPM)

• Entertainment: Walt Disney Co (DIS)

This time, the networks reconstructed by the B-VPNR reconstruction algorithm are

very different across datasets. However, the networks reconstructed using the B-RPNR

141

www.manaraa.com

Algorithm are very similar across all three sets1, therefore, once again, we are capturing

something fundamental about the market.

In all three networks reconstructed using the B-RPNR algorithm, there is a strong

relationship between XOM and CVX, which is sensible as they are both in the same industry.

On Datasets 2 and 3, there is also a strong relationship between DIS and C, whereas in 1,

it is between JPM and C. In Datasets 1 and 3, there is also a relatively-strong relationship

between JPM and C.

1 More investigation is required in order to determine why the B-VPNR Algorithm provides more consistent
results for the smaller network and the B-RPNR Algorithm for the larger network. As noted previously, the
larger the network, the stronger the unmeasured ζ is compared to the links in Q(t). As such, it is possible
that the larger the network grows, the more ζ acts as noise which needs to be reduced using the B-RPNR
Algorithm.

142

www.manaraa.com

Dataset 1

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

XOM ← CVX 1.109 0.175 3.513 0.030

XOM ← C 1.541 0.243 2.526 0.022

XOM ← JPM 3.046 0.481 7.784 0.066

XOM ← DIS 0.242 0.038 13.957 0.119

CVX ← XOM 1.325 0.209 4.538 0.039

CVX ← C 3.553 0.561 1.045 0.009

CVX ← JPM 5.832 0.920 4.516 0.038

CVX ← DIS 0.472 0.074 11.139 0.095

C ← XOM 6.337 1.000 19.776 0.168

C ← CVX 0.230 0.036 14.372 0.122

C ← JPM 0.675 0.106 23.578 0.201

C ← DIS 0.138 0.022 52.791 0.450

JPM ← XOM 2.895 0.457 3.372 0.029

JPM ← CVX 1.818 0.287 20.640 0.176

JPM ← C 1.804 0.285 7.954 0.068

JPM ← DIS 0.117 0.018 117.373 1.000

DIS ← XOM 0.700 0.110 6.108 0.052

DIS ← CVX 0.536 0.085 1.269 0.011

DIS ← C 2.344 0.370 9.739 0.083

DIS ← JPM 2.218 0.350 2.262 0.019

Table 10.7 The magnitude and vulnerability of links in Network 2 (XOM, CVX, C, JPM,
and DIS) using Dataset 1 (daily data) reconstructed using the B-VPNR Algorithm.

143

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

XOM ← CVX 0.595 0.483 2.324 1.000

XOM ← C 0.000 0.000 0.193 0.083

XOM ← JPM 0.000 0.000 0.133 0.057

XOM ← DIS 0.037 0.030 0.658 0.283

CVX ← XOM 0.955 0.775 1.452 0.625

CVX ← C 0.199 0.162 0.133 0.057

CVX ← JPM 0.000 0.000 0.103 0.044

CVX ← DIS 0.001 0.001 0.650 0.280

C ← XOM 0.051 0.042 0.414 0.178

C ← CVX 0.000 0.000 0.653 0.281

C ← JPM 0.431 0.350 0.676 0.291

C ← DIS 0.034 0.027 0.738 0.318

JPM ← XOM 0.000 0.000 0.318 0.137

JPM ← CVX 0.000 0.000 0.432 0.186

JPM ← C 0.490 0.398 0.650 0.280

JPM ← DIS 0.060 0.048 1.659 0.714

DIS ← XOM 0.000 0.000 0.113 0.049

DIS ← CVX 0.236 0.191 0.122 0.053

DIS ← C 0.024 0.019 0.075 0.032

DIS ← JPM 1.232 1.000 0.101 0.044

Table 10.8 The magnitude and vulnerability of links in Network 2 (XOM, CVX, C, JPM,
and DIS) using Dataset 1 (daily data) reconstructed using the B-RPNR Algorithm.

144

www.manaraa.com

Magnitude Vulnerability

B-VPNR

B-RPNR

Figure 10.15 The normalized magnitude (top left) and vulnerability (top right) of links in
Network 2 on Dataset 1 reconstructed using the B-VPNR Algorithm as given in Table 10.7
and the same (bottom left and right) using the B-RPNR Algorithm as given in Table 10.8.

145

www.manaraa.com

Dataset 2

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

XOM ← CVX 0.568 0.262 3.336 0.111

XOM ← C 1.139 0.526 2.293 0.076

XOM ← JPM 0.362 0.167 4.078 0.135

XOM ← DIS 0.360 0.166 3.839 0.127

CVX ← XOM 1.413 0.653 3.085 0.102

CVX ← C 1.032 0.477 0.581 0.019

CVX ← JPM 0.399 0.185 2.199 0.073

CVX ← DIS 0.136 0.063 1.731 0.057

C ← XOM 0.258 0.119 24.117 0.800

C ← CVX 0.037 0.017 30.149 1.000

C ← JPM 0.580 0.268 9.942 0.330

C ← DIS 0.067 0.031 16.752 0.556

JPM ← XOM 0.209 0.097 9.718 0.322

JPM ← CVX 0.310 0.143 11.820 0.392

JPM ← C 2.143 0.990 3.153 0.105

JPM ← DIS 0.358 0.165 6.230 0.207

DIS ← XOM 1.767 0.816 0.934 0.031

DIS ← CVX 1.447 0.668 1.195 0.040

DIS ← C 2.164 1.000 0.258 0.009

DIS ← JPM 0.208 0.096 0.585 0.019

Table 10.9 The magnitude and vulnerability of links in Network 2 (XOM, CVX, C, JPM, and
DIS) using Dataset 2 (minute-resolution data) reconstructed using the B-VPNR Algorithm.

146

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

XOM ← CVX 0.225 0.362 0.740 1.000

XOM ← C 0.000 0.000 0.011 0.015

XOM ← JPM 0.056 0.090 0.072 0.098

XOM ← DIS 0.053 0.085 0.062 0.084

CVX ← XOM 0.621 1.000 0.269 0.363

CVX ← C 0.000 0.000 0.018 0.025

CVX ← JPM 0.227 0.366 0.117 0.157

CVX ← DIS 0.004 0.007 0.100 0.135

C ← XOM 0.000 0.000 0.054 0.073

C ← CVX 0.000 0.000 0.100 0.134

C ← JPM 0.000 0.000 0.307 0.415

C ← DIS 0.186 0.300 0.347 0.469

JPM ← XOM 0.000 0.000 0.126 0.170

JPM ← CVX 0.093 0.150 0.312 0.421

JPM ← C 0.293 0.472 0.005 0.007

JPM ← DIS 0.000 0.000 0.026 0.035

DIS ← XOM 0.000 0.000 0.055 0.074

DIS ← CVX 0.088 0.143 0.035 0.047

DIS ← C 0.322 0.519 0.198 0.268

DIS ← JPM 0.000 0.000 0.057 0.077

Table 10.10 The magnitude and vulnerability of links in Network 2 (XOM, CVX, C,
JPM, and DIS) using Dataset 2 (minute-resolution data) reconstructed using the B-RPNR
Algorithm.

147

www.manaraa.com

Magnitude Vulnerability

B-VPNR

B-RPNR

Figure 10.16 The normalized magnitude (top left) and vulnerability (top right) of links in
Network 2 on Dataset 2 reconstructed using the B-VPNR Algorithm as given in Table 10.9
and the same (bottom left and right) using the B-RPNR Algorithm as given in Table 10.10.

148

www.manaraa.com

Dataset 3

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

XOM ← CVX 0.590 0.638 2.553 0.901

XOM ← C 0.210 0.227 1.358 0.479

XOM ← JPM 0.195 0.210 1.142 0.403

XOM ← DIS 0.268 0.289 1.885 0.665

CVX ← XOM 0.619 0.668 1.585 0.559

CVX ← C 0.797 0.861 0.512 0.181

CVX ← JPM 0.328 0.354 0.604 0.213

CVX ← DIS 0.463 0.500 0.710 0.251

C ← XOM 0.126 0.136 1.667 0.588

C ← CVX 0.155 0.168 2.834 1.000

C ← JPM 0.293 0.316 1.089 0.384

C ← DIS 0.196 0.212 1.144 0.404

JPM ← XOM 0.275 0.297 1.953 0.689

JPM ← CVX 0.191 0.207 1.962 0.692

JPM ← C 0.601 0.650 0.968 0.341

JPM ← DIS 0.133 0.143 1.487 0.525

DIS ← XOM 0.865 0.935 1.136 0.401

DIS ← CVX 0.461 0.498 1.737 0.613

DIS ← C 0.231 0.249 0.606 0.214

DIS ← JPM 0.926 1.000 0.930 0.328

Table 10.11 The magnitude and vulnerability of links in Network 2 (XOM, CVX, C, JPM,
and DIS) using Dataset 3 (decisecond-resolution data) reconstructed using the B-VPNR
Algorithm.

149

www.manaraa.com

Link Magnitude Normalized Vulnerability Normalized

Magnitude Vulnerability

XOM ← CVX 0.177 0.340 0.575 1.000

XOM ← C 0.000 0.000 0.000 0.000

XOM ← JPM 0.000 0.000 0.000 0.000

XOM ← DIS 0.000 0.000 0.000 0.000

CVX ← XOM 0.522 1.000 0.195 0.340

CVX ← C 0.000 0.000 0.000 0.000

CVX ← JPM 0.000 0.000 0.000 0.000

CVX ← DIS 0.000 0.000 0.000 0.000

C ← XOM 0.000 0.000 0.000 0.000

C ← CVX 0.000 0.000 0.000 0.000

C ← JPM 0.000 0.000 0.002 0.004

C ← DIS 0.357 0.685 0.000 0.001

JPM ← XOM 0.000 0.000 0.000 0.000

JPM ← CVX 0.000 0.000 0.000 0.000

JPM ← C 0.002 0.004 0.051 0.088

JPM ← DIS 0.235 0.450 0.142 0.247

DIS ← XOM 0.000 0.000 0.000 0.000

DIS ← CVX 0.000 0.000 0.000 0.000

DIS ← C 0.000 0.000 0.369 0.642

DIS ← JPM 0.138 0.264 0.242 0.421

Table 10.12 The magnitude and vulnerability of links in Network 2 (XOM, CVX, C, JPM,
and DIS) using Dataset 3 (decisecond-resolution data) reconstructed using the B-RPNR
Algorithm.

150

www.manaraa.com

Magnitude Vulnerability

B-VPNR

B-RPNR

Figure 10.17 The normalized magnitude (top left) and vulnerability (top right) of links in
Network 2 on Dataset 3 reconstructed using the B-VPNR Algorithm as given in Table 10.11
and the same (bottom left and right) using the B-RPNR Algorithm as given in Table 10.12.

10.5 Discussion

In the two reconstructed financial networks, features of the networks were discovered that

were independent of both time and time resolution. These features both provide evidence

that reconstruction on financial networks is possible as well as pose interesting questions to

be investigated in future work.

Furthermore, we have shown that these networks are vulnerable to destabilizing

attacks. Primarily, vulnerability analysis is a proof of concept, demonstrating the versatility

of this vulnerability analysis. Future research, however, is merited to further understand

these vulnerabilities and how to protect against them.

151

www.manaraa.com

Chapter 11

Conclusions

In conclusion, we have extended an algorithm for passive network reconstruction of

time-domain networks such that (a) the algorithm consistently computes an answer (the

VPNR Algorithm), (b) given the proper assumptions, the algorithm converges to the correct

answer faster than the original algorithm would, (c) the algorithm can be modified to be

more robust to noise on the input-output data (the RPNR Algorithm), and (d) the algorithm

can be modified to reconstruct even if the input data is not measured (the B-VPNR and

B-RPNR Algorithms).

We then used stock market data from a variety of sources and used the B-VPNR and

B-RPNR Algorithms on this data to reconstruct networks of financial data. Links in these

networks represent the causal dependence of the price of one security on the changes in price

of another security. We also analyzed these networks to detect which links in these networks

are must susceptible to additive perturbations which could lead to a destabilization of the

entire financial network. These additive perturbations take the form of trading one security

based on the price of another security, and vulnerability is inversely related to the difficulty

or expense required to create such a trading scheme to destabilize the market.

There is still a large amount of work to be done to solidify the theory of passive

network reconstruction; nonetheless, this thesis is a demonstration of the functionality of the

proposed algorithms and the types of analyses that can be performed on a reconstructed

network.

152

www.manaraa.com

Appendices

153

www.manaraa.com

Appendix A

Implementation Notes

A Python implementation of network reconstruction methodology that is used in this

and the subsequent chapters is available publicly at https://gitlab.com/idealabs/

netreco.

Due to the sparsity of L and M , a CSR Matrix from the sparse matrix library from

SciPy [39] was used to represent the data structures, enabling greater speed and lower memory

consumption in the construction and execution of the algorithm.

The least squares algorithm used to learn the Toeplitz representation of Q and P from

data for the non-robust (vanilla) network reconstruction algorithm was implemented using

the least squares implementation included in the scipy.sparse.linalg library [41] in order to

take advantage of the sparse matrix representation of M .

The least squares algorithm used to learn the Toeplitz representation of Q and P from

data for the robust network reconstruction algorithm was implemented using the Lasso Model

Selection: Cross Validation algorithm (LassoLarsIC) included in Scikit Learn’s linear model

library [38], using Akaike’s Information Criterion (AIC) to select the regularization parameter

α. Unfortunately, this implementation requires dense matrices as inputs; therefore the sparse

M had to be converted into a dense matrix before use.

The differential evolutionary algorithm in SciPy’s optimization library [40] was used

to fit the convolution model to the Toeplitz representation in both the vanilla and the

robust network reconstruction algorithms. Though considerably slower in execution than the

curve-fitting algorithms recommended in [10], it was found that the evolutionary algorithm

154

https://gitlab.com/idealabs/netreco
https://gitlab.com/idealabs/netreco

www.manaraa.com

was able to find a good model more far more consistently than [10] using far less data (the

correct model could be found consistently with r = 100 in the example above, where [10]

stated a need for r = 600 with several restarts at random initial conditions).

The evolutionary algorithm only attempts to fit the bi and ci in the equation, con-

straining ak = −
∑

i=1wkbi.

In order to fit the convolution model, the number of delays in the corresponding link

(the order) as well as bounds on all bi needs to be specified a priori (note also that given the

assumption that the system is stable, all ai are bounded such that −1 < ai < 1). If the order

and the bounds are chosen to be larger than needed, then the evolutionary algorithm may

run slowly, but it will select the appropriate number of ai and/or bi to be zero (or two or

more bi that are nearly identical, allowing the terms to be summed) in order to fit the link

with the proper error, thus choosing the remaining non-zero ai and bi correctly. However,

if either the order or the bounds are selected to be too small, then the fit will not be good.

For the running numeric example, since the order is at most 3 for any link, and the largest

magnitude bi on any link is 8.588, the evolutionary algorithm was chosen to have order 4

with bi bounded at −10 < bi < 10. As shown in the examples above, these choices led to

near-perfect fits for the vanilla algorithm and good fits for the robust and blind algorithms.

Wider bounds for bi and significantly higher orders were also tried, with little impact on the

results.

155

www.manaraa.com

Appendix B

Source Code

The source code, not including the usage examples but including additional iPython

Notebooks used to generate the results of this thesis, can be found publicly at http:

//gitlab.com/idealabs/netreco, master branch, commit 8154cd96.
1 import time
2 from functools import partial
3
4 import numpy as np
5 import matplotlib.pyplot as plt
6
7 from scipy.sparse import csr_matrix
8 from scipy.sparse.linalg import lsqr
9 from scipy.optimize import differential_evolution

10
11 from sklearn import linear_model
12
13 from .ReconstructorLegacy import Profile
14
15 np.set_printoptions(precision=2, threshold=np.nan, linewidth=200,
16 suppress=True)
17
18
19 class Reconstructor:
20 """Reconstructs a network from data.
21
22 Available kwargs
23 ----------------
24 debug : bool, default=False
25 True if debug or status messages should be displayed.
26 r : int > 0
27 The approximator for the convolution (smaller is faster, larger
28 is more likely to reconstruct). If given equal or larger than f,
29 will be thresholded to f-1 (where f is the number of data points
30 passed into the algorithm’s run function).
31 order : number > 1, default=3
32 w_k in the equations above. In other words, the number of poles
33 to find in P and Q. There will be 2*order + 1 parameters in
34 the fit function Q_ij(t) (a_k plus a b_i and a c_i for each i
35 from 0 to order).
36 bounds : number > 0, default=10
37 All parameters b_i of the fit convolution Q_ij(t) (in other words,
38 all a_k, b_i, and c_i) will be constrained to be between
39 (-order,order). Note, all parameters c_i are assumed to be stable, or
40 in other words, -1 < c_i < 1.
41 robust : boolean, default=False
42 True if the robust algorithm should be used (lasso least squares),
43 False otherwise (regular least squares).
44 T22 : numpy array (pm x l) or None, default=None
45 The a-priory information known about the system (see the paper)
46 for more information. Only used by the measured reconstruction.
47 Pbool : numpy array (p x m) containing only 0’s and 1’s, or None.
48 Default=None
49 The known boolean structure of P. (Probably will only work if
50 each row and each column has exactly one 1). Only used by the measured
51 reconstruction.
52 criterion : str (’bic’ (default) or ’aic’)
53 The information criterion to do the robust (Lasso) least squares.
54 bic is the Bayes Information Criterion and aic is the Akaike
55 Information Criterion.
56
57 Sources
58 -------
59 [1] V. Chetty, J. Eliason and S. Warnick, "Passive Reconstruction of
60 Non-Target-Specific Discrete-Time LTI Systems," American Control
61 Conference, Boston, MA, 2016.
62 """
63
64 def __init__(self, **kwargs):
65 self.debug = kwargs.get(’debug’, False)
66
67 self.robust = kwargs.get(’robust’, False)

156

http://gitlab.com/idealabs/netreco
http://gitlab.com/idealabs/netreco

www.manaraa.com

68 self.alpha = kwargs.get(’alpha’, 1)
69 self.T22 = kwargs.get(’T22’, None)
70 self.Pbool = kwargs.get(’Pbool’, None)
71 self.order = kwargs.get(’order’, 3)
72 self.bounds = kwargs.get(’bounds’, 10)
73 self.test_params = kwargs.get(’test_params’, False)
74 self.criterion = kwargs.get(’criterion’, ’aic’) # or bic
75 self.real_params = kwargs.get(’real_params’, {})
76
77 self.r = kwargs.get(’r’, 3)
78
79 self.executed = False
80
81 ###
82 # Main Algorithms
83 ###
84
85 def measured(self, y, u, ij=None, plot=False, titles={}):
86 """Runs a network reconstruction for measured inputs. See [1] for the
87 algorithm. Can use the robust or non-robust algorithm.
88
89 Attempts to build the convolutional representation of the DSF given by
90
91 y(t) = Q(t)*y(t) + P(t)*u(t)
92
93 where * denotes the convolution operator. Q(t) is an (p x p) matrix
94 of equations (see below), and P(t) is a (p x m) matrix of equations.
95
96 Let n = max(t-1, r), where r <= f (f is the number of datapoints in the
97 input/output set). This convolution is then given by
98
99 y(1) = 0 AND

100 y(t) = sum_{i = 1}ˆ{n} [Q(r)y(n-i+1) + Pi(t)u(n-i+1)], t > 1
101
102 (Note, setting r < f creates an approximation of the convolution, which
103 works for large enough r since, for stable systems, Q(r) = 0 as r
104 approaches infinity).
105
106 Each Q_ij(t) is fit to a
107 function of the form
108
109 Q_ij(t) = a_k delta_t,0 + sum_{i = 0}ˆ{w_k} b_i(c_i)ˆt
110
111 For parameter set a_k, b_i, and c_i (there will be 1 + 2*w_k
112 parameters).
113
114 Parameters
115 ----------
116 y : numpy array (f x p)
117 The measured outputs.
118 u : numpy array (f x m)
119 The measured inputs.
120 ij : 2-tuple or None, default=None
121 If given, specifies a single entry in Q to fit a convolution to,
122 otherwise all entries in Q will be fit. Note: 1-indexed. So
123 ij = (1, 3) refers to Qis[0][2].
124 plot : boolean, default=False
125 If True, plots the reconstruction results.
126 titles : dict {int => str}
127 Labels for each output i (1-indexed)
128
129 Returns
130 -------
131 params : dict of dict of list (size self.order * 2)
132 Each param[i][j] is a list of the best-fit parameters for Q(i, j).
133 """
134 if self.executed:
135 raise Exception(’Already used a reconstruction on this object.’
136 ’Please create a new reconstruction object.’)
137
138 beginning = time.time()
139
140 T22 = self.prepare_measured(y, u)
141 LQrows, LQcols, LQdata = self.build_LQ(y)
142 LProws, LPcols, LPdata = self.build_LP(
143 u, T22, LQrows, LQcols, LQdata
144)
145 M = self.build_M(LProws, LPcols, LPdata, is_measured=True)
146
147 yhat = self.build_yhat(y)
148 xhat = self.run_lsqr(M, yhat)
149
150 Qis = self.extract_Qis(xhat)
151 params = self.fit_convolution(Qis, ij, plot, titles)
152
153 self.executed = True
154
155 self.dprint(’\nReconstruction Complete! Took {:.3f} Seconds\n’.format(
156 time.time() - beginning
157))
158
159 return params
160
161 def unmeasured(self, y, ij=None, plot=False, titles={}):
162 """Runs a network reconstruction for unmeasured inputs. See [1] for the
163 algorithm. Must use the robust algorithm (forces it to True).
164
165 Attempts to build the convolutional representation of the DSF given by
166
167 y(t) = Q(t)*y(t) + Delta(t)
168
169 where * denotes the convolution operator. Q(t) is an (p x p) matrix

157

www.manaraa.com

170 of equations (see below), and P(t) is a (p x m) matrix of equations.
171
172 Let n = max(t-1, r), where r <= f (f is the number of datapoints in the
173 input/output set). This convolution is then given by
174
175 y(1) = 0 AND
176 y(t) = sum_{i = 1}ˆ{n} [Q(r)y(n-i+1) + Delta(t)], t > 1
177
178 (Note, setting r < f creates an approximation of the convolution, which
179 works for large enough r since, for stable systems, Q(r) = 0 as r
180 approaches infinity).
181
182 Each Q_ij(t) is fit to a
183 function of the form
184
185 Q_ij(t) = a_k delta_t,0 + sum_{i = 0}ˆ{w_k} b_i(c_i)ˆt
186
187 For parameter set a_k, b_i, and c_i (there will be 1 + 2*w_k
188 parameters).
189
190 Parameters
191 ----------
192 y : numpy array (f x p)
193 The measured outputs.
194 ij : 2-tuple or None, default=None
195 If given, specifies a single entry in Q to fit a convolution to,
196 otherwise all entries in Q will be fit. Note: 1-indexed. So
197 ij = (1, 3) refers to Qis[0][2].
198 plot : boolean, default=False
199 If True, plots the reconstruction results.
200 titles : dict {int => str}
201 Labels for each output i (1-indexed)
202
203 Returns
204 -------
205 params : dict of dict of list (size self.order * 2)
206 Each param[i][j] is a list of the best-fit parameters for Q(i, j).
207 """
208 if self.executed:
209 raise Exception(’Already used a reconstruction on this object.’
210 ’Please create a new reconstruction object.’)
211
212 beginning = time.time()
213
214 self.prepare_unmeasured(y)
215 LQrows, LQcols, LQdata = self.build_LQ(y)
216 M = self.build_M(LQrows, LQcols, LQdata, is_measured=False)
217
218 yhat = self.build_yhat(y)
219 xhat = self.run_lsqr(M, yhat)
220
221 Qis = self.extract_Qis(xhat)
222 params = self.fit_convolution(Qis, ij, plot, titles)
223
224 self.executed = True
225
226 self.dprint(’\nReconstruction Complete! Took {:.3f} Seconds\n’.format(
227 time.time() - beginning
228))
229
230 return params
231
232 ###
233 # Algorithm Steps
234 ###
235
236 def prepare_measured(self, y, u):
237 """Sets up a measured reconstruction.
238
239 Parameters
240 ----------
241 y : numpy array (f x p)
242 The measured outputs.
243 u : numpy array (f x m)
244 """
245 with Profile(self.debug, ’Preparing for a Measured Reconstruction’):
246 f, p = y.shape
247 f1, m = u.shape
248
249 self.r = min(self.r, f - 1)
250
251 assert f == f1
252
253 self.p = p # Number of outputs
254 self.m = m # Number of inputs
255 self.f = f # Number of data points
256
257 if self.Pbool is not None:
258 p1, m1 = self.Pbool.shape
259 assert p == p1
260 assert m == m1
261 self.T22 = self._build_T22(self.Pbool)
262 ps = p1 * m1 - len(self.T22)
263 else:
264 raise Exception(’Not implemented - cannot reconstruct with ’
265 ’measured inputs without a Pbool.’)
266
267 self.ps = ps
268
269 return self.T22
270
271 def prepare_unmeasured(self, y):

158

www.manaraa.com

272 """Sets up a measured reconstruction.
273
274 Parameters
275 ----------
276 y : numpy array (f x p)
277 The measured outputs.
278 """
279 with Profile(self.debug, ’Preparing for an Unmeasured Reconstruction’):
280 f, p = y.shape
281
282 self.r = min(self.r, f - 1)
283
284 self.p = p # Number of outputs
285 self.f = f # Number of data points
286
287 # self.robust = True
288
289 def build_LQ(self, y):
290 """
291 Builds the Q half of L (see paper [1]).
292
293 Parameters
294 ----------
295 y : numpy array (f x p)
296
297 Returns
298 -------
299 LQ : numpy array (p(f-1) x r(pˆ2 - p))
300 The Q half of L. Note that the paper is not entirely correct on the
301 construction of L. It only goes to r(f-1) rows, using the first f-1
302 points from y. Also, either L has r rows of zeros at the beginning
303 (making rf rows) or yhat goes from y2 to yf. We choose the latter.
304 """
305 with Profile(self.debug, ’Building LQ’):
306 width = self.p * self.p - self.p
307
308 # Ignore all Q_ii
309 to_ignore = [()]
310 count = 0
311 for i in range(self.p):
312 for j in range(self.p):
313 if i == j:
314 to_ignore.append(count)
315 count += 1
316
317 # Build the individual blocks
318 Brows = [None for i in range(self.f - 1)]
319 Bcols = [None for i in range(self.f - 1)]
320 Bdats = [None for i in range(self.f - 1)]
321 for i in range(self.f - 1):
322 Brows[i], Bcols[i], Bdats[i] = \
323 self._build_block(y[i, :], to_ignore)
324
325 # Build LQ
326 rows = []
327 cols = []
328 data = []
329
330 for i in range(self.f - 1):
331 start_row = i * self.p
332 for j in range(min(i + 1, self.r)):
333 start_col = j * width
334 block_index = i - j
335
336 rows.append(Brows[block_index] + start_row)
337 cols.append(Bcols[block_index] + start_col)
338 data.append(Bdats[block_index])
339
340 return rows, cols, data
341
342 def build_LP(self, u, T22, rows, cols, data, col_offset=None):
343 """
344 Builds the P half of L (see paper [1]).
345
346 Parameters
347 ----------
348 u : numpy array (f x p)
349 T22 : numpy array (mp x l)
350
351 Returns
352 -------
353 LQ : numpy array (p(f-1) x rl))
354 The P half of L. Note that the paper is not entirely correct on the
355 construction of L. It only goes to r(f-1) rows, using the first f-1
356 points from y. Also, either L has r rows of zeros at the beginning
357 (making rf rows) or yhat goes from y2 to yf. We choose the latter.
358 """
359 with Profile(self.debug, ’Building LP’):
360
361 if col_offset is None:
362 col_offset = self.r * (self.p * self.p - self.p)
363
364 l = self.m * self.p - len(T22)
365
366 # Build the individual blocks
367 Brows = [None for i in range(self.f - 1)]
368 Bcols = [None for i in range(self.f - 1)]
369 Bdats = [None for i in range(self.f - 1)]
370 for i in range(self.f - 1):
371 Brows[i], Bcols[i], Bdats[i] = self._build_block(u[i, :], T22)
372
373 # Build LP

159

www.manaraa.com

374 for i in range(self.f - 1):
375 start_row = i * self.p
376 for j in range(min(i + 1, self.r)):
377 start_col = col_offset + j * l
378 block_index = i - j
379
380 rows.append(Brows[block_index] + start_row)
381 cols.append(Bcols[block_index] + start_col)
382 data.append(Bdats[block_index])
383
384 return rows, cols, data
385
386 def build_M(self, rows, cols, data, is_measured):
387 """Builds the M sparse matrix from LQ (if unmeasured) or LP (if
388 measured).
389
390 Parameters
391 ----------
392 rows : list of lists
393 The row indices of non-zero entries of LQ or LP.
394 cols : list of lists
395 The col indices of non-zero entries of LQ or LP. 1-1 with rows.
396 data : list of lists
397 The non-zero entry values of LQ or LP. 1-1 with rows and cols
398 (meaning M[rows[i], cols[i]] = data[i]).
399
400 Returns
401 -------
402 M : csr_matrix
403 """
404 with Profile(self.debug, ’Building M’):
405 height = (self.f - 1) * self.p
406 if is_measured:
407 width = self.r * (self.ps + self.p * self.p - self.p)
408 else:
409 width = self.r * (self.p * self.p - self.p)
410
411 M = csr_matrix((np.concatenate(data),
412 (np.concatenate(rows), np.concatenate(cols))),
413 (height, width))
414
415 return M
416
417 def build_yhat(self, y):
418 """
419 Stacks y into [y2’ ... y2’ ... yf’ ... yf’]’’
420
421 Parameters
422 ----------
423 y : numpy array (f x p)
424
425 Returns
426 -------
427 yhat : numpy array (p(f-1) x 1)
428 """
429 with Profile(self.debug, ’Building yhat’):
430 ybar = y[1:, :]
431 yhat = ybar.reshape(self.p * (self.f - 1), 1)
432
433 return yhat
434
435 def run_lsqr(self, M, yhat):
436 """
437 Finds the xhat that "best" fits yhat = M*xhat.
438
439 If the robust algorithm is not running, this is regular least squares,
440 or in other words:
441
442 xhat = argmin_x || yhat - M*xhat ||_2
443
444 If the robust algorithm is running, this is the lasso relaxation of
445 the sparse least squares, or in other words:
446
447 xhat = argmin_x || yhat - M*xhat ||_2 + alpha * || xhat ||_1
448
449 where alpha is set when the algorithm is called.
450 """
451 with Profile(self.debug, ’Running Least Squares to get xhat’):
452 if self.robust:
453 model = linear_model.LassoLarsIC(criterion=self.criterion)
454 y = list(yhat.reshape(max(yhat.shape)))
455 model.fit(M.toarray(), y)
456
457 self.dprint(
458 ’\tFinished in {} iterations’.format(model.n_iter_)
459)
460 xhat = np.array(model.coef_).reshape(
461 (len(model.coef_), 1)
462)
463
464 xhat = np.array(model.coef_).reshape(
465 (len(model.coef_), 1)
466)
467
468 else:
469 x, istop, itn, r1norm, r2norm, arnorm, acond, arnorm, xnorm, \
470 var = lsqr(M, yhat)
471 xhat = np.array(x).reshape((len(x), 1))
472 self.dprint(’\tFinished lsq: Error = {:.3f}’.format(r1norm))
473
474 return xhat

160

www.manaraa.com

475
476 def extract_Qis(self, xhat):
477 """
478 Extracts the Qi’s from the given xhat vector.
479 """
480 with Profile(self.debug, ’Extracting Qis’):
481 Qis = {}
482 width = self.p * self.p - self.p
483
484 for i in range(self.r):
485 vec = xhat[i * width: i * width + width]
486
487 pos = 0
488 for j in range(self.p):
489
490 if j not in Qis:
491 Qis[j] = {}
492
493 for k in range(self.p):
494 if j == k:
495 continue
496
497 curr = Qis[j].get(k, [0])
498 curr.append(vec[pos][0])
499 Qis[j][k] = curr
500
501 pos += 1
502
503 return Qis
504
505 def fit_convolution(self, Qis, ij, plot, titles):
506 """Fits the convolutional representation to Q.
507 """
508 if ij is not None:
509 i = ij[0]
510 j = ij[1]
511 sub = self._fit_ij_conv(Qis, i - 1, j - 1, plot)
512
513 params = {i: {j: sub}}
514 return params
515 else:
516 params = {}
517 for i in range(self.p):
518 params[i] = {}
519 for j in range(self.p):
520 if i == j:
521 continue
522
523 params[i][j] = self._fit_ij_conv(Qis, i, j, plot, titles)
524
525 return params
526
527 ###
528 # Helpers
529 ###
530
531 def _fit_ij_conv(self, Qis, i, j, plot, titles):
532 """Fits the convolutional representation to Q(i,j)
533 """
534 with Profile(self.debug, ’Learning Convolution for Q({},{})’.format(
535 i + 1, j + 1
536)):
537
538 t = list(range(self.r + 1))
539 vals = Qis[i][j]
540
541 bounds = []
542 stab_tol = 0.001 # Prevent the system from being marginally stable
543 for k in range(self.order):
544 bounds.append((-self.bounds, self.bounds))
545 bounds.append((-1 + stab_tol, 1 - stab_tol))
546
547 assert len(t) == len(vals)
548
549 obj = partial(self._fiterr, act=vals)
550 rs = differential_evolution(obj, bounds=bounds)
551
552 if plot:
553 err, exp = self._fiterr(rs.x, vals, True)
554
555 plt.figure(figsize=(10, 8))
556 plt.scatter(t, vals, c=’r’, label=’Data (xhat)’)
557 plt.plot(t, exp, c=’b’,
558 label=’Reconstructed Convolution Model’)
559
560 if (i + 1, j + 1) in self.real_params:
561 rp = self.real_params[(i + 1, j + 1)]
562 err1, real = self._fiterr(rp, vals, True)
563 plt.plot(t, real, color=’g’, linestyle=’-.’,
564 label=’Actual Convolution Model’)
565
566 plt.xlim((0, self.r))
567 plt.xlabel(’t’)
568
569 linkname = ’’
570 if (i + 1) in titles and (j + 1) in titles:
571 linkname = ’: {} <-- {}’.format(titles[i + 1],
572 titles[j + 1])
573
574 plt.title(’Q(t)[{},{}]{}’.format(i + 1, j + 1, linkname))
575 plt.legend()
576

161

www.manaraa.com

577 self._print_dsf(i, j, rs.x, t, vals, titles)
578
579 return rs.x
580
581 def _fiterr(self, params, act, return_exp=False):
582 """Computes the error of a convolutional representation parameterized
583 by params to the data act.
584 """
585 n = len(act)
586 exp = np.zeros(n)
587 for t in range(1, n):
588 for i in range(int(len(params) / 2)):
589 exp[t] += params[i * 2] * params[i * 2 + 1] ** t
590
591 sqerr = (np.array(act) - exp) ** 2
592 rmse = np.sqrt(sqerr.mean())
593 # abserr = abs(np.array(act) - exp)
594 # rmse = abserr.mean()
595
596 # print(toterr)
597
598 if return_exp:
599 return rmse, exp
600 else:
601 return rmse
602
603 def _build_T22(self, PBool):
604 """
605 Takes a boolean structure of P and cconverts it into a T22.
606 """
607 to_delete = []
608
609 index = 0
610 for i in range(self.p):
611 for j in range(self.m):
612 if PBool[i, j] == 0:
613 to_delete.append(index)
614
615 index += 1
616
617 return to_delete
618
619 def _build_block(self, v, to_ignore=[]):
620 """
621 Builds the diagonal portion of the block used in both LQ and LP, which
622 is [v’ 0 ... 0; 0 v’ ... 0 ; ... ; 0 0 ... v’], where the number of
623 rows is p.
624
625 The block is actually just a dictionary of {(row, col) => value}
626
627 Parameters
628 ----------
629 v : numpy array (length l = length p or length m or arbitrary)
630 The data belonging in the block. It is either a vector from u or
631 from y.
632 to_ignore : list (len <= p*l)
633 Columns to remove from the block, where the index is referring
634 to one of the p*l columns, not the l entries of v.
635
636 Returns
637 -------
638 row : np.array (len = p*l - len(to_ignore))
639 The row indices of the non-zero data
640 col : np.array (len = p*l - len(to_ignore))
641 The column indices of the non-zero data, corresponding to row
642 data : np.array (len = p*l - len(to_ignore))
643 The non-zero entries, where data[i] is located at index
644 (row[i], col[i])
645 """
646 vt = v.transpose().tolist()
647 l = len(vt)
648
649 row = []
650 col = []
651 data = []
652 loc = 0
653 for i in range(self.p):
654 for j in range(l):
655 pos = i * l + j
656 if pos in to_ignore:
657 continue
658
659 row.append(i)
660 col.append(loc)
661 data.append(vt[j])
662 loc += 1
663
664 return np.array(row), np.array(col), np.array(data)
665
666 def _print_dsf(self, i, j, params, t, data, titles):
667 if not self.debug:
668 return
669
670 linkname = ’’
671 if (i + 1) in titles and (j + 1) in titles:
672 linkname = ’ {} <-- {}’.format(titles[i + 1], titles[j + 1])
673
674 msg = ’\tQ({},{}){}: ’.format(i + 1, j + 1, linkname)
675 poles = []
676
677 a = 0
678 for i in range(self.order):

162

www.manaraa.com

679 b = i * 2
680 c = b + 1
681 poles.append(’{:.3f}*({:.3f})ˆt’.format(params[b], params[c]))
682 a += -params[b]
683
684 msg += ’ + ’.join(poles)
685 msg += ’ + {:3f} * delta(t,0)’.format(a)
686 print(msg)
687
688 err = self._fiterr(params, data)
689 # actual = np.array(data)
690
691 # errors = actual - expected
692 # rmse = np.sqrt((errors ** 2).mean())
693 print(’\t\tRMSE = {:.3f}’.format(err))
694
695 print(’\t\tMatlab: {}’.format(params))
696
697 def dprint(self, msg):
698 """
699 Prints the debug msg ‘msg‘ conditional on debug being set to True.
700 """
701 if self.debug:
702 print(msg)

Listing B.1 Reconstructor.py: Library for reconstructing networks from data. Contains
the VPNR, RPNR, B-VPNR, and B-RPNR.

1 import numpy as np
2
3
4 def ss_sim(A, B, C, u):
5 """
6 Simulates the discrete time system (assuming x[0] = 0):
7
8 x[k+1] = Ax[k] + Bu[k]
9 y[k] = Cx[k]

10
11 Parameters
12 ----------
13 A : numpy array (n x n)
14 B : numpy array (n x m)
15 C : numpy array (p x n)
16 u : numpy array (f x m)
17 Row i is u[i]’
18
19 Returns
20 -------
21 y : numpy array (f x p)
22 Row i is y[i]’
23 """
24 n, n1 = A.shape
25 n2, m = B.shape
26 p, n3 = C.shape
27 f, m1 = u.shape
28
29 assert n == n1
30 assert n == n2
31 assert n == n3
32 assert m == m1
33
34 xi = np.zeros((n, 1))[:, 0]
35 y = np.zeros((f, p))
36
37 for i in range(f):
38 y[i] = C.dot(xi)
39 xi = A.dot(xi) + B.dot(u[i])
40
41 return y

Listing B.2 ss.py: Computes the outputs of the given state space model over time using
the given inputs.

1 import numpy as np
2 from netreco import ss_sim
3
4
5 A = [
6 [0.75, 0, 0, 0, 0, 1.2],
7 [-.1, -.35, 0, 0, 0, 0],
8 [0, 0, .85, -1, 0, 0],
9 [0, -.73, 0, .95, 0, 0],

10 [0, 0, .43, 0, -.6, 0],
11 [0, 0, 0, 0, .2, .55]
12
13]
14 A = np.array(A)
15 B = [
16 [1.4, 0, 0],
17 [0, -.25, 0],
18 [0, 0, 0.75],
19 [0, 0, 0],
20 [0, 0, 0],
21 [0, 0, 0]
22]
23 B = np.array(B)

163

www.manaraa.com

24 C = [
25 [1, 0, 0, 0, 0, 0],
26 [0, 1, 0, 0, 0, 0],
27 [0, 0, 1, 0, 0, 0]
28]
29 C = np.array(C)
30
31 u = np.random.rand(601, 3) * 2 - 1
32 y = ss_sim(A, B, C, u)

Listing B.3 ex ss.py: Example usage of ss.py. Generates inputs Du ∈ RT×m, where
m = 3, T = 601, and each entry is taken from a uniform distribution spanning from −1 to 1.
The script then simulates the outputs of the state space system introduced in Section 6.5.

1 import numpy as np
2
3 from netreco import Reconstructor
4 from ex_ss import u, y
5
6 r = 100
7
8 # The a priori information known about the system.
9 # We assume target specificity, meaning each input affects exactly one measured state

10 # and each measured state is affected by exactly one input.
11 Pbool = np.identity(3)
12
13 # The parameters of the actual convolutional model.
14 # Used for plotting and verifying that the reconstructed network is correct.
15 real_params = {
16 (1, 3): [.51, .75, -.11, -.6, -.816, .55],
17 (2, 1): [.286, -.35],
18 (3, 2): [7.684, .95, -8.588, .85]
19 }
20
21 recon = Reconstructor(debug=True, r=r, Pbool=Pbool, max_iterations=1000, bounds=10, order=4,
22 real_params=real_params, robust=False)
23 parameters = recon.measured(y, u, plot=True)

Listing B.4 ex vpnr.py: Example usage of the VPNR Algorithm.

1 import numpy as np
2
3 from netreco import Reconstructor
4 from ex_ss import u, y
5
6 r = 100
7
8 # The a priori information known about the system.
9 # We assume target specificity, meaning each input affects exactly one measured state

10 # and each measured state is affected by exactly one input.
11 Pbool = np.identity(3)
12
13 # The parameters of the actual convolutional model.
14 # Used for plotting and verifying that the reconstructed network is correct.
15 real_params = {
16 (1, 3): [.51, .75, -.11, -.6, -.816, .55],
17 (2, 1): [.286, -.35],
18 (3, 2): [7.684, .95, -8.588, .85]
19 }
20
21 recon = Reconstructor(debug=True, r=r, Pbool=Pbool, max_iterations=1000, bounds=10, order=4,
22 real_params=real_params, robust=True)
23 parameters = recon.measured(y, u, plot=True)

Listing B.5 ex rpnr.py: Example usage of the RPNR Algorithm.

1 import numpy as np
2
3 from netreco import Reconstructor
4 from ex_ss import u, y
5
6 r = 100
7
8 # The a priori information known about the system.
9 # We assume target specificity, meaning each input affects exactly one measured state

10 # and each measured state is affected by exactly one input.
11 Pbool = np.identity(3)
12
13 # The parameters of the actual convolutional model.
14 # Used for plotting and verifying that the reconstructed network is correct.
15 real_params = {
16 (1, 3): [.51, .75, -.11, -.6, -.816, .55],
17 (2, 1): [.286, -.35],
18 (3, 2): [7.684, .95, -8.588, .85]
19 }
20
21 recon = Reconstructor(debug=True, r=r, Pbool=Pbool, max_iterations=1000, bounds=10, order=4,
22 real_params=real_params, robust=False)
23 parameters = recon.unmeasured(y, u, plot=True)

Listing B.6 ex bvpnr.py: Example usage of the B-VPNR Algorithm.

164

www.manaraa.com

1 import numpy as np
2
3 from netreco import Reconstructor
4 from ex_ss import u, y
5
6 r = 100
7
8 # The a priori information known about the system.
9 # We assume target specificity, meaning each input affects exactly one measured state

10 # and each measured state is affected by exactly one input.
11 Pbool = np.identity(3)
12
13 # The parameters of the actual convolutional model.
14 # Used for plotting and verifying that the reconstructed network is correct.
15 real_params = {
16 (1, 3): [.51, .75, -.11, -.6, -.816, .55],
17 (2, 1): [.286, -.35],
18 (3, 2): [7.684, .95, -8.588, .85]
19 }
20
21 recon = Reconstructor(debug=True, r=r, Pbool=Pbool, max_iterations=1000, bounds=10, order=4,
22 real_params=real_params, robust=True)
23 parameters = recon.unmeasured(y, u, plot=True)

Listing B.7 ex brpnr.py: Example usage of the B-RPNR Algorithm.

165

www.manaraa.com

References

[1] Julius Adebayo, Taylor Southwick, Vasu Chetty, Enoch Yeung, Ye Yuan, Jorge Goncalves,

J Grose, J Prince, Guy-Bart Stan, and Sean Warnick. Dynamical structure function

identifiability conditions enabling signal structure reconstruction. In Decision and

Control (CDC), 2012 IEEE 51st Annual Conference on, pages 4635–4641. IEEE, 2012.

[2] Saurabh Amin, Alvaro A Cárdenas, and S Shankar Sastry. Safe and secure networked

control systems under denial-of-service attacks. In Hybrid Systems: Computation and

Control, pages 31–45. Springer, 2009.

[3] Cristina Basescu, Raphael M Reischuk, Pawel Szalachowski, Adrian Perrig, Yao Zhang,

Hsu-Chun Hsiao, Ayumu Kubota, and Jumpei Urakawa. Sibra: Scalable internet

bandwidth reservation architecture. arXiv preprint arXiv:1510.02696, 2015.

[4] Rakesh B Bobba, Katherine M Rogers, Qiyan Wang, Himanshu Khurana, Klara Nahrst-

edt, and Thomas J Overbye. Detecting false data injection attacks on dc state estimation.

In Preprints of the First Workshop on Secure Control Systems, CPSWEEK, volume

2010, 2010.

[5] Alvaro A Cárdenas, Saurabh Amin, and Shankar Sastry. Research challenges for the

security of control systems. In Hot Topics in Security (HotSec), 2008 3rd Usenix

Workshop on, 2008.

[6] Vasu Chetty. Necessary and sufficient informativity conditions for robust network

reconstruction using dynamical structure functions. M.S. Thesis, Brigham Young

University, Provo, UT, 2012.

[7] Vasu Chetty and Sean Warnick. Network semantics of dynamical systems. In Decision

and Control (CDC), 2015 IEEE 54th Annual Conference on, pages 1557–1562. IEEE,

2015.

[8] Vasu Chetty, Nathan Woodbury, Elham Vaziripour, and Sean Warnick. Vulnerability

analysis for distributed and coordinated destabilization attacks. In Decision and Control

(CDC), 2014 IEEE 53rd Annual Conference on, pages 511–516. IEEE, 2014.

166

www.manaraa.com

[9] Vasu Chetty, Nathan Woodbury, and Sean Warnick. Farming as feedback control. In

American Control Conference (ACC), 2014, pages 2688–2693. IEEE, 2014.

[10] Vasu Chetty, Joel Eliason, and Sean Warnick. Passive reconstruction of non-target-

specific discrete-time lti systems. In American Control Conference (ACC), 2016, pages

66–71. IEEE, 2016.

[11] Vasu Chetty, Nathan Woodbury, Jacob Brewer, Kenneth Lee, and Sean Warnick. Ap-

plying a passive network reconstruction technique to twitter data in order to identify

trend setters. Submitted for publication at the IEEE Conference on Control Technology

and Applications, 2017.

[12] Ann Cox, Sandip Roy, and Sean Warnick. A science of system security. In Decision and

Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 487–492. IEEE, 2014.

[13] Mohammed Dahleh, Munther Dahleh, and George Verghese. Dynamic systems and

control. MIT OpenCourseWare, 2011. URL http://ocw.mit.edu/courses/

electrical-engineering-and-computer-science/6-241j-dynamic-

systems-and-control-spring-2011/readings/. online textbook.

[14] Peter Fairley. Blackout threat unmitigated a decade after the northeast went dark.

IEEE Spectrum, August 2013. URL http://spectrum.ieee.org/energywise/

energy/the-smarter-grid/blackout-threat-unmitigated-a-decade-

after-the-northeast-went-dark. [Online; posted 14-August-2013].

[15] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White paper,

Symantec Corp., Security Response, 5, 2011.

[16] Jorge Gonçalves and Sean Warnick. Necessary and sufficient conditions for dynamical

structure reconstruction of lti networks. IEEE Transactions on Automatic Control, 53

(7):1670–1674, 2008.

[17] David Grimsman, Vasu Chetty, Nathan Woodbury, Elham Vaziripour, Sandip Roy,

Daniel Zappala, and Sean Warnick. A case study of a systematic attack design method

for critical infrastructure cyber-physical systems. In American Control Conference

(ACC), 2016, pages 296–301. IEEE, 2016.

[18] Paul Hines, Karthikeyan Balasubramaniam, and Eduardo Cotilla Sanchez. Cascading

failures in power grids. Potentials, IEEE, 28(5):24–30, 2009.

167

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/
http://spectrum.ieee.org/energywise/energy/the-smarter-grid/blackout-threat-unmitigated-a-decade-after-the-northeast-went-dark
http://spectrum.ieee.org/energywise/energy/the-smarter-grid/blackout-threat-unmitigated-a-decade-after-the-northeast-went-dark
http://spectrum.ieee.org/energywise/energy/the-smarter-grid/blackout-threat-unmitigated-a-decade-after-the-northeast-went-dark

www.manaraa.com

[19] Min Suk Kang, Virgil D Gligor, and Vyas Sekar. Spiffy: Inducing cost-detectability

tradeoffs for persistent link-flooding attacks. Network and Distributed System Secu-

rity Symposium, 2016. URL http://www.comp.nus.edu.sg/˜kangms/papers/

spiffy.pdf.

[20] Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. Security & Privacy, IEEE,

9(3):49–51, 2011.

[21] Edward A Lee. Cyber physical systems: Design challenges. In Object Oriented Real-Time

Distributed Computing (ISORC), 2008 11th IEEE International Symposium on, pages

363–369. IEEE, 2008.

[22] William S Levine. The control handbook. CRC press, 1996.

[23] John Leyden. Polish teen derails tram after hacking train network. The Register,

January 2008. URL https://www.theregister.co.uk/2008/01/11/tram_

hack/. [Online; posted 11-January-2008].

[24] Yao Liu, Peng Ning, and Michael K Reiter. False data injection attacks against state

estimation in electric power grids. ACM Transactions on Information and System

Security (TISSEC), 14(1):13, 2011.

[25] Men Long, Chwan-Hwa Wu, and John Y Hung. Denial of service attacks on network-

based control systems: impact and mitigation. Industrial Informatics, IEEE Transactions

on, 1(2):85–96, 2005.

[26] Burton G Malkiel. The efficient market hypothesis and its critics. The Journal of

Economic Perspectives, 17(1):59–82, 2003.

[27] Donatello Materassi and Giacomo Innocenti. Topological Identification in Networks of

Dynamical Systems. Transactions on Automatic Control, 55(8):1860–1871, 2010.

[28] Raman K Mehra and J Peschon. An innovations approach to fault detection and diagnosis

in dynamic systems. Automatica, 7(5):637–640, 1971.

[29] Yilin Mo and Bruno Sinopoli. Secure control against replay attacks. In Communication,

Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on,

pages 911–918. IEEE, 2009.

[30] Yilin Mo, Emanuele Garone, Alessandro Casavola, and Bruno Sinopoli. False data

injection attacks against state estimation in wireless sensor networks. In Decision and

Control (CDC), 2010 49th IEEE Conference on, pages 5967–5972. IEEE, 2010.

168

http://www.comp.nus.edu.sg/~kangms/papers/spiffy.pdf
http://www.comp.nus.edu.sg/~kangms/papers/spiffy.pdf
https://www.theregister.co.uk/2008/01/11/tram_hack/
https://www.theregister.co.uk/2008/01/11/tram_hack/

www.manaraa.com

[31] NASDAQ Trader. Nadaq totalview-itch. http://www.nasdaqtrader.com/

Trader.aspx?id=Totalview2, 2017. Accessed: 2017-02-13.

[32] President’s Commission on Critical Infrastructure Protection. Critical foundations:

Protecting America’s infrastructures, 1997. URL https://fas.org/sgp/library/

pccip.pdf.

[33] Philip E Paré, Vasu Chetty, and Sean Warnick. On the necessity of full-state measurement

for state-space network reconstruction. In Global Conference on Signal and Information

Processing (GlobalSIP), 2013 IEEE, pages 803–806. IEEE, 2013.

[34] Christopher Quinn, Negar Kiyavash, and Todd Coleman. Directed Information Graphs.

Transactions on Information Theory, 61(12):6887–6909, 2015.

[35] Anurag Rai, David Ward, Sandip Roy, and Sean Warnick. Vulnerable links and secure

architectures in the stabilization of networks of controlled dynamical systems. In

American Control Conference (ACC), 2012, pages 1248–1253. IEEE, 2012.

[36] Henrik Sandberg, Saurabh Amin, and K Johansson. Cyberphysical security in networked

control systems: an introduction to the issue. Control Systems, IEEE, 35(1):20–23, 2015.

[37] Christoph Schuba, Ivan Krsul, Markus Kuhn, Eugene Spafford, Aurobindo Sundaram,

and Diego Zamboni. Analysis of a denial of service attack on tcp. In Security and

Privacy, 1997 IEEE Symposium on, pages 208–223. IEEE, 1997.

[38] Scikit Learn Lasso. Lasso model selection: Cross-validation aic/bic. http:

//scikit-learn.org/stable/auto_examples/linear_model/plot_

lasso_model_selection.html, 2016. Accessed: 2016-11-08.

[39] Scipy. Sparse matrices (scipy.sparse). https://docs.scipy.org/doc/scipy-0.

18.1/reference/sparse.html, 2016. Accessed: 2016-11-08.

[40] Scipy Optimize Differential Evolution. scipy.optimize.differential evolution.

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/

scipy.optimize.differential_evolution.html, 2016. Accessed: 2016-11-

08.

[41] Scipy Sparse Least Squares. scipy.sparse.linalg.lsqr. https://docs.scipy.org/

doc/scipy-0.18.1/reference/generated/scipy.sparse.linalg.lsqr.

html#scipy.sparse.linalg.lsqr, 2016. Accessed: 2016-11-08.

169

http://www.nasdaqtrader.com/Trader.aspx?id=Totalview2
http://www.nasdaqtrader.com/Trader.aspx?id=Totalview2
https://fas.org/sgp/library/pccip.pdf
https://fas.org/sgp/library/pccip.pdf
http://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
http://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
http://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_model_selection.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.sparse.linalg.lsqr.html#scipy.sparse.linalg.lsqr
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.sparse.linalg.lsqr.html#scipy.sparse.linalg.lsqr
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.sparse.linalg.lsqr.html#scipy.sparse.linalg.lsqr

www.manaraa.com

[42] Jill Slay and Michael Miller. Lessons learned from the maroochy water breach. Springer,

2007.

[43] Antonio Teixeira, Kin Cheong Sou, Henrik Sandberg, and Karl H Johansson. Secure

control systems: A quantitative risk management approach. Control Systems, IEEE, 35

(1):24–45, 2015.

[44] Fei-Yue Wang and Derong Liu. Networked control systems. Springer, 2008.

[45] Sean Warnick. Shared hidden state and network representations of interconnected

dynamical systems. In Communication, Control, and Computing (Allerton), 2015 53rd

Annual Allerton Conference on, pages 25–32. IEEE, 2015.

[46] Nathan Woodbury, Vasu Chetty, and Sean Warnick. Robust passive reconstruction of

stable discrete-time lti networks. Submitted for publication at the IEEE Conference on

Decision and Control, 2017.

[47] Nathan Woodbury, Vasu Chetty, and Sean Warnick. Passive reconstruction of stable

discrete-time lti networks using an evolutionary algorithm. Submitted for publication at

the IEEE Conference on Decision and Control, 2017.

[48] Yahoo Finance. Yahoo finance. http://finance.yahoo.com, 2017. Accessed:

2017-02-13.

[49] Ye Yuan, Guy-Bart Stan, Sean Warnick, and Jorge Gonçalves. Robust dynamical

network reconstruction. In Decision and Control (CDC), 2010 49th IEEE Conference

on, pages 810–815. IEEE, 2010.

[50] Ye Yuan, Guy-Bart Stan, Sean Warnick, and Jorge Goncalves. Robust dynamical

network structure reconstruction. Automatica, 47(6):1230–1235, 2011.

[51] Bonnie Zhu, Anthony Joseph, and Shankar Sastry. A taxonomy of cyber attacks on scada

systems. In Internet of things (iThings/CPSCom), 2011 international conference on

and 4th international conference on cyber, physical and social computing, pages 380–388.

IEEE, 2011.

170

http://finance.yahoo.com

	Brigham Young University
	BYU ScholarsArchive
	2017-05-01

	Network Reconstruction and Vulnerability Analysis of Financial Networks
	Nathan Scott Woodbury
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Problem Statement and Contributions
	1.1 Problem Statement
	1.2 Theoretical Road-map
	1.3 Contributions

	2 Dynamical Structure Functions
	2.1 Background
	2.2 From State Space to Dynamical Structure Function

	3 Vulnerability and Security of Networked Control Systems
	3.1 Networked Control Systems
	3.1.1 Common Terminology

	3.2 Historic Attacks on Networked Control Systems
	3.2.1 Stuxnet
	3.2.2 Maroochy Water Services
	3.2.3 Polish Tram System Hacked by Teenager
	3.2.4 Power Blackouts

	3.3 Potential Attacks on Networked Control Systems
	3.3.1 Observability and Related Vulnerabilities
	3.3.2 Stability and Related Vulnerabilities

	4 Modelling and Simulation of Markets
	4.1 Overview of the Stock Market
	4.2 Limit Orders
	4.3 The Matching Engine, the Limit Order Book, and Prices
	4.4 Data Sources
	4.4.1 The ITCH Data
	4.4.2 Yahoo Finance
	4.4.3 The Tour de Finance

	5 Vulnerability to Single-Link Destabilization Attacks
	5.1 Problem Formulation
	5.2 Solution

	6 Vanilla Passive Network Reconstruction
	6.1 Introduction - Network Reconstruction
	6.2 Problem Formulation
	6.3 The Vanilla Passive Network Reconstruction Algorithm
	6.4 Assumptions Necessary for Reconstruction
	6.5 Numeric Example
	6.6 On the Convergence of the Vanilla Passive Network Reconstruction Algorithm
	6.7 Conclusions

	7 Robust Passive Network Reconstruction
	7.1 Problem Formulation
	7.2 The Robust Passive Network Reconstruction Algorithm
	7.3 Assumptions Necessary for Reconstruction
	7.4 Numeric Examples
	7.4.1 Robust Network Reconstruction on Non-Noisy Data
	7.4.2 Vanilla and Robust Network Reconstruction on Noisy Inputs
	7.4.3 Vanilla and Robust Network Reconstruction on Noisy Outputs
	7.4.4 Vanilla and Robust Network Reconstruction on Noisy Inputs and Outputs

	7.5 On the Convergence of the Robust Passive Network Reconstruction Algorithm
	7.6 Conclusions

	8 Blind Passive Network Reconstruction
	8.1 Problem Formulation
	8.2 The Blind Passive Network Reconstruction Algorithms
	8.3 Assumptions Necessary for Reconstruction
	8.4 Numeric Examples
	8.4.1 Blind Reconstruction with No Noise
	8.4.2 Blind Reconstruction with Noisy Outputs

	8.5 On the Convergence of the Blind Passive Reconstruction Algorithms
	8.6 Conclusions

	9 Open Questions in Passive Network Reconstruction
	10 Vulnerability Analysis of Financial Networks
	10.1 Network Reconstruction as Applied to Financial Networks
	10.1.1 Interpretation of A Reconstructed Financial Network
	10.1.2 Interpretation of the Impulse Responses
	10.1.3 Interpretation of Link Magnitudes
	10.1.4 Creating a Destabilizing Attack on Financial Networks
	10.1.5 Protecting Against a Destabilizing Attack on Financial Networks

	10.2 Reconstructability of Financial Networks
	10.3 Datasets
	10.3.1 Dataset 1 (Daily Data)
	10.3.2 Dataset 2 (Minute-Resolution Data)
	10.3.3 Dataset 3 (Decisecond-Resolution Data)

	10.4 Reconstructed Networks
	10.4.1 Network 1
	10.4.2 Network 2

	10.5 Discussion

	11 Conclusions
	Appendices
	A Implementation Notes
	B Source Code
	References

